Применения полупроводниковых лазеров в экспериментах по атомной оптике

П.Н. Мелентьев, В.И. Балыкин, С.Н. Руднев, П.А. Борисов, А.Е. Афанасьев

Институт спектроскопии РАН

План доклада

I. Введение

- основные направления атомной оптики
- использование лазеров в экспериментах атомной оптики

II. Лазерные системы на основе полупроводниковых лазеров для целей атомной оптики

- полупроводниковый лазер в режиме свободной одночастотной генерации излучения
- лазерные системы с внешним резонатором по схеме Литтрова
- режим двухчастотной генерация излучения лазера
- стабилизация частоты излучения лазера
- увеличение мощности излучения с использованием схемы Injection locking

III. Экспериментальные результаты

- эксперименты по лазерному зеемановскому охлаждению тепловых атомов ⁸⁵Rb
- фокусировка атомов ⁸⁵Rb с помощью 2DMOT
- **IV.** Выводы

Лазерное охлаждение атомов

Управление траекторией движения атомов

Детектирование атомов

Лазерное охлаждение атомов

цикличность взаимодействия лазерное охлаждение

лазерное охлаждение в переменном магнитном поле

ширина линии $\delta v \ll \gamma$, диапазон непрерывной перестройки $\Delta f \gg \Delta v_D$, *гауссов* профиль излучения, двух частотный спектр излучения, P > 10 mBt

Управление траекторией движения атомов (потенциальная сила)

зеркальное отражение атомов пленение атомов

фокусировка атомов каналирование атомов

ширина линии $\delta v < 100 \gamma$, диапазон непрерывной перестройки $\Delta f > \Delta v_D$, *гауссов* профиль излучения, P > 10 мBT

Детектирование атомов

детектирование пространственного распределения атомов детектирование скоростного распределения ансамбля атомов

ширина линии $\delta v < \gamma$, диапазон непрерывной перестройки $\Delta f > \Delta v_D$, *гауссов* профиль излучения, P > 1 мBT

измерение пространственного распределения атомов

Лазерные системы на основе полупроводниковых лазеров для целей атомной оптики

- 1. Полупроводниковый лазер в режиме свободной одночастотной генерации излучения
- 2. Полупроводниковый лазер с внешним резонатором
- 3. Лазерные системы с усилением излучения полупроводникового лазера

Режим двухчастотной генерации излучения лазера

Возбуждение Возбуждение 2^x одночастотным частотным лазером лазером F'=4 120 МГц F'=3 63.4 МГц **F'=2** 29.3 МГц **F'=1** 780 нм **F=3** 3.0357 ГГц **F=2** нет цикличности

Схема энергетических уровней D2 линии атома ⁸⁵Rb

Режим двухчастотной генерации излучения лазера: СВЧ модуляция тока инжекции полупроводникового лазера без внешнего резонатора

Режим двухчастотной генерации излучения лазера: экспериментальные результаты

Modulation at different current

Режим двухчастотной генерации излучения лазера: Свч модуляция тока инжекции полупроводникового лазера с внешним резонатором

Режим двухчастотной генерации излучения лазера: выбор мощности СВЧ поля

 $0 < I - i_{RF}$ $I + i_{RF} < I_{max}$

Стабилизация частоты излучения лазера

Схема стабилизации частоты DAVLL

Стабилизация частоты DAVLL

Схема стабилизации частоты на склоне/вершине нелинейных резонансов поглощения

Стабилизация частоты на склоне/вершине нелинейных резонансов поглощения

Экспериментальные результаты по стабильности частоты излучения лазера

Экспериментальные результаты

vactora, chilleg.

Экспериментальные результаты: лазерное зеемановское охлаждение

Экспериментальные результаты: лазерное зеемановское охлаждение

(a) $\Delta = -39$ MHz; (b) $\Delta = -46$ MHz; (c) $\Delta = -54$ MHz; (d) $\Delta = -66$ MHz; (e) $\Delta = -77$ MHz.

Экспериментальные результаты: лазерное зеемановское охлаждение

Экспериментальная установка

2D MOT

Вакуумная камера

Экспериментальные результаты: фокусировка

Профиль атомного пучка

Изображение на 2D ССD камере

2D МОТ выключена

Реализовано сканирование точки фокусировки в пространстве в диапазоне до 2 мм.

Экспериментальные результаты: скоростная монохроматизация

Скоростное распределение атомов в пучке

