РАСПРЕДЕЛЕННЫЕ ВОЛОКОННО-ОПТИЧЕСКИЕ АКУСТИЧЕСКИЕ СЕНСОРЫ ДЛЯ СИСТЕМ РЕГИСТРАЦИИ УТЕЧЕК ГАЗА

К. А. Зыков-Мызин, М. И. Беловолов

Научный Центр Волоконной Оптики Российской Академии Наук

System configuration for pipeline leakage detection

Испытательный стенд

Сигнал акустического датчика

при утечке газа из трубопровода

Спектр сигнала при отсутствии утечки

Спектр акустического сигнала при падении давления в трубопроводе с 6 до 3 атм.

Спектр акустического сигнала при падении давления в трубопроводе с 0,5 до 0,1 атм.

The location of leaks can be determined to an accuracy of several meters. For this location sensing application, a novel configuration of a single-loop Sagnac interferometric acoustic sensor has been developed and tested [1]. This configuration is based on asymmetric desensitization of more than a half of the loop to phase modulation. We present a theoretical consideration of the performance of the sensor and an experimental verification test which demonstrates a high sensitivity of the Sagnac interferometer developed. It is closed to that of Michelson- or Mach-Zehnder-type interferometric fiber sensor. We obtained an accuracy of about 2 m in determining the coordinate of the sound action along the fiber, 1 km in the length. We have determined the sensitivity and the frequency response of a fiber coil acting as a local acoustic sensor in a fiber distributed sensor configuration.

 M. I. Belovolov, V.S. Belov, K. A. Zykov-Myzin, A. P. Orlov, A. V. Gladyshev, M. A. Gorskii, E. M. Dianov. Novel Fiber Optic Acoustic Sensor Based on Asymmetrically Sensitive Sagnac Interferometer. – OFS-17, 17th International Conference on Optical Fiber Sensors, 23 -27 May 2005, Bruges, Belgium, Proceedings of SPIE, 2005, Vol.5855, pp. 948 – 951.

Схема экспериментальной установки

Experimental setup with combined Sagnac-Michelson interferometric sensors.

Конструкция локального акустического датчика

A single-loop acoustic sensor design with an asymmetrically sensitive Sagnac interferometer.

АЧХ чувствительности датчика

Frequency response of a single-loop Sagnac acoustic sensor measured as a function of frequency f with a tunable sound generator.

Сигналы совмещенного интерферометра

Signal traces of 8 kHz sound at the output of Michelson interferometer $U_M(t)$ (top) and Sagnac interferometer $U_S(t)$ (bottom).

Чувствительность к звуковому

давлению

Координатная чувствительность

Точность определения координаты воздействия составила 2 м, при длине волоконной линии 1 км.

заключение

 Экспериментально установлено, что утечки газа из отверстий (диаметр ~ 1 мм) могут быть зарегистрированы по издаваемому акустическому излучению (звуку) с помощью одномодовых

волоконных световодов, укрепленных вдоль трубы.

2. Предложена схема акустического распределенного датчика на базе волоконного интерферометра Саньяка с несимметричной чувствительностью. Экспериментально показано, что чувствительность локальных участков волокна по отношению к акустическому воздействию по абсолютной величине приближается к чувствительности волокна в схемах волоконных интерферометров Майкельсона или Маха-Цандера. Для катушек диаметром 10 см. и длиной используемого волокна 20 м., максимальная чувствительность достигается на частоте 8 кГц, и составляет 10⁻⁵ Па при длине плеча интерферометра, равной 1 км.