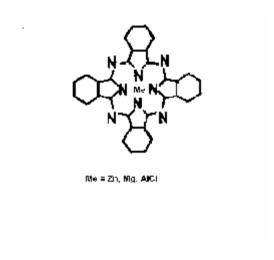
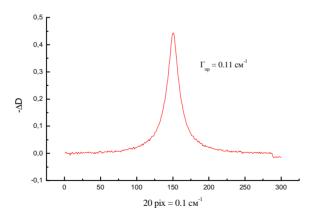
Исследование магнитных свойств возбужденных состояний молекул порфиринов методами селективной лазерной спектроскопии

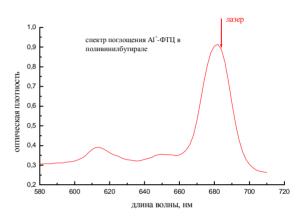
ИСАН, Троицк *Н. И. Улицкий* МЛСМПиНТ, Вроцлав В. И. Нижанковский

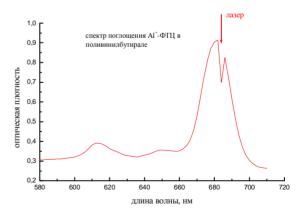
План доклада

- Введение
- Селективная спектроскопия провалов
- Магнитные свойства металлопорфиринов
- Экспериментальная установка
- Расчеты
- Экспериментальные результаты
- Анализ
- Заключение


Введение


- Лаборатория электронных спектров молекул существует в ИСАН около 35 лет.
- Основная тематика:
 - Исследование электронных спектров сложных органических молекул в твердых растворах при низких температурах
 - Основные матрицы
 - Кристаллические матрицы Шпольского
 - Стеклообразные матрицы, полимеры
 - Молекулы
 - Ароматические полициклические углеводороды
 - Порфирины


Селективная лазерная спектроскопия примесных неупорядоченных молекулярных систем


- Электронные спектры сложных органических молекул в стеклообразных матрицах уширены неоднородно и состоят из широких полос ($\Gamma_{neodh} \ge 100 \ cm^{-1}$) даже при низких температурах.
- Основные методы устранения неоднородного уширения
 - Селективное возбуждение люминесценции
 - <u>Лазерное выжигание узких стабильных провалов в спектрах поглощения (ВП)</u> позволяют увеличить спектральное разрешение в $10^3...10^5$ раз.
- Области применения этих методов:
 - Исследование тонкоструктурных спектров примесных молекул
 - Изучение свойств, строения и динамики стекол и полимеров при низких температурах
 - Разработка активных сред для частотно-селективных элементов памяти
 - Исследование фотохимических реакций в конденсированной фазе
 - Изучение влияния внешних полей на сложные примесные молекулы
 - ... а также многое другое.

Метод выжигания провалов и объекты исследований

Основные «инструменты»

- Неперестраиваемые лазеры + спектральные приборы + широкополосные источники света
 - Широкий спектральный диапазон регистрации
 - Невысокое спектральное разрешение (0.5 − 2 см⁻¹)
- Сканируемые одночастотные лазеры на красителях
 - Высокое спектральное разрешение (10⁻³см⁻¹ и лучше), но очень дорогие и некомпактные
 - Сканируемые одночастотные диодные лазеры
 - Нет диодов для всего видимого диапазона

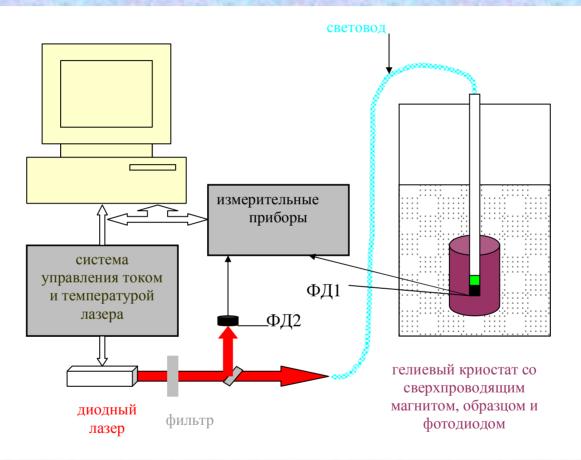
Магнитные свойства состояния S_1 молекул порфиринов

- Молекулы свободных оснований порфиринов имеют симметрию D_{2h} и не имеют магнитного момента в синглетных состояниях.
- Молекулы Ме-П в свободном состоянии имеют симметрию D_{4h} , и согласно теореме ван Флека в вырожденном состоянии S_I у этих молекул существует статический магнитный момент, направленный вдоль оси симметрии (оси z), а нижний возбужденный синглетный электронный уровень является дважды вырожденным. При помещении молекул в низкосимметричную матрицу уровень S_I расщепляется на подуровни Q_y и Q_x с расстоянием Δv_0 между ними. В случае неупорядоченных полимерных матриц спектры поглощения примесных молекул уширены неоднородно, величина расщепления имеет значительную дисперсию, а средняя величина расщепления практически всегда существенно меньше, чем ширина полосы поглощения.

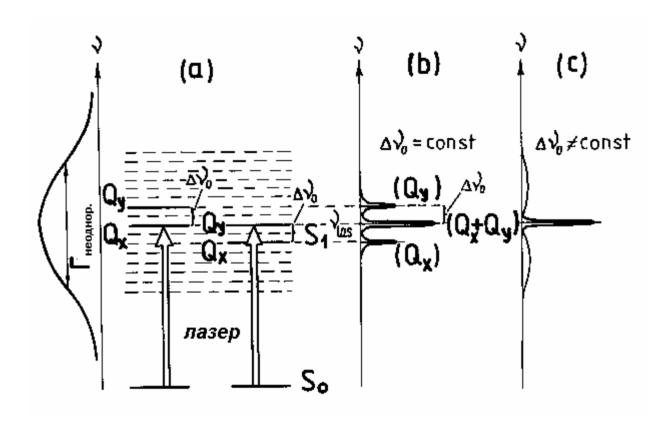

Основные особенности проявления магнитных эффектов в спектрах S-S-переходов молекул порфиринов в неупорядоченных матрицах:

- Слабость эффектов: $\sim 10^{-2}$ см⁻¹/кЭ (линейный), $\sim 10^{-5}$ см⁻¹/кЭ² (квадратичный)
- Хаотическая ориентация молекул примеси по отношению к внешнему полю

Ранние эксперименты


- До появления методов селективной лазерной спектроскопии магнитные свойства порфиринов исследовались, в основном, в матрицах Шпольского или в стеклах методом магнитного кругового дихроизма. Представляло интерес сравнить результаты, получаемые методом ВП в стеклах и в кристаллических матрицах Шпольского.
- Ряд экспериментов по исследованию эффекта Зеемана на S-S переходах был выполнен в нашем отделе в 80-е годы. Оказалось, что для молекул безметальных оснований порфиринов полученные результаты слабо зависят от типа матриц. Однако было обнаружено, что в случае молекул цинкового комплекса ФТЦ величина измеренного магнитного момента существенно меньше, чем предсказываемая теоретически и чем величины, полученные для ряда металлокомплексов порфина в кристаллических матрицах Шпольского.
- Для выяснения причин необходимо было расширить круг объектов и усовершенствовать методики измерений.

В лаборатории сильных магнитных полей и низких температур во Вроцлаве



Экспериментальная установка

• Основные параметры лазера: $\Delta v \approx 3*10^{-3} \text{cm}^{-1}$; $\Delta v_{\text{скан}} \approx 1.2...2.0 \text{ cm}^{-1}$; λ =650...690 нм (с разными диодами). Максимальное поле в соленоиде H = 150кЭ.

Схема образования провала в спектре поглощения молекул металлокомплексов порфиринов в аморфной матрице

Основные формулы

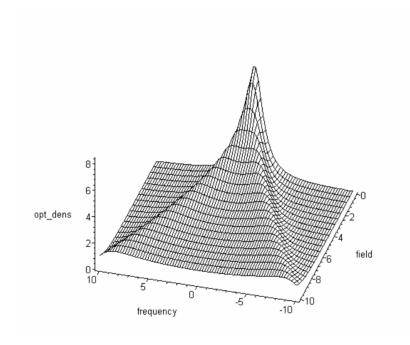
При наложении внешнего магнитного поля H линии поглощения отдельных молекул (БФЛ), образующие Q – полосу, испытывают сдвиги, величины которых могут быть получены с использованием теории возмущений для почти вырожденного случая:

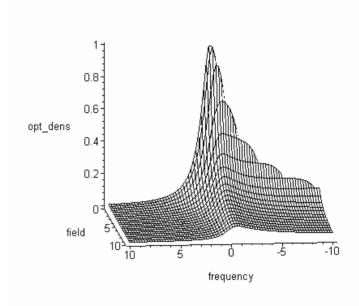
$$\Delta n_H = \pm \frac{\Delta n_0}{2} \left\{ \left[1 + \left(\frac{2 \mathbf{m} \cdot \mathbf{H}}{\Delta n_0} \right)^2 \right]^{1/2} - 1 \right\},\tag{1}$$

где m - статический магнитный момент молекулы в вырожденном состоянии S_I (а он существует у исследуемых молекул согласно теореме ван Флека и направлен вдоль оси симметрии (оси z)); знаки + и - соответствуют верхнему (Q_v) и нижнему (Q_x) подуровням дублета S_I , расщепление между которыми составляет Δv_0 .

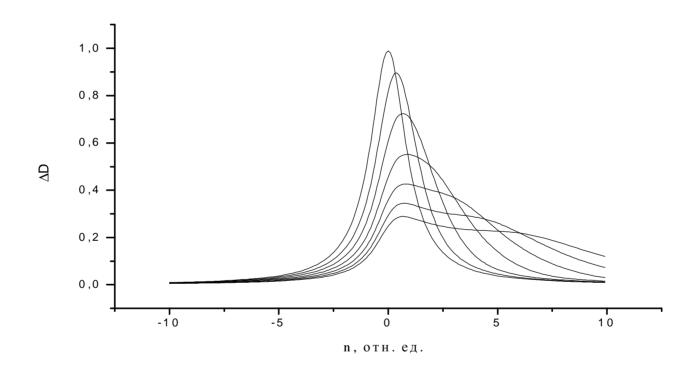
Формула описывает ситуацию, когда эффект влияния внешнего поля может быть промежуточным между линейным и квадратичным. Здесь

$$\mathbf{m} \cdot \mathbf{H} = \mathbf{m} \cdot H \cdot Cosq , \qquad (2)$$

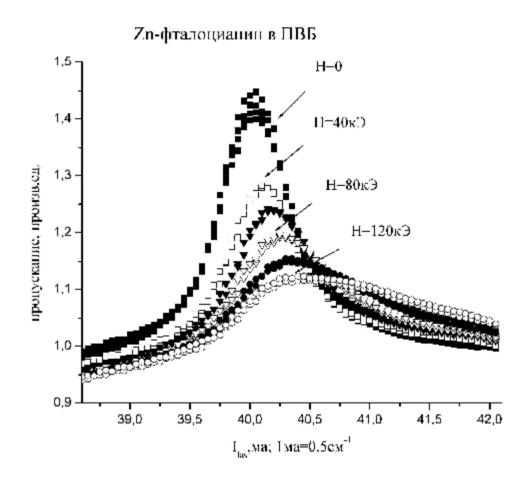

где θ – угол между направлением магнитного поля и осью z молекулы.


При выжигании провала в полосе поглощения его контур формируется из спектров молекул, частоты поглощения $Q_x(0-0)$ или $Q_y(0-0)$ которых совпадают с частотой выжигания, но молекулы при этом ориентированы хаотически как по отношению к внешнему магнитному полю, так и к векторам поляризации зондирующего и выжигающего излучения. Это приводит к довольно сложным зависимостям формы контура провала от величины поля для различных экспериментальных ситуаций. Для нашего случая общее выражение для контура провала может быть записано в следующем виде:

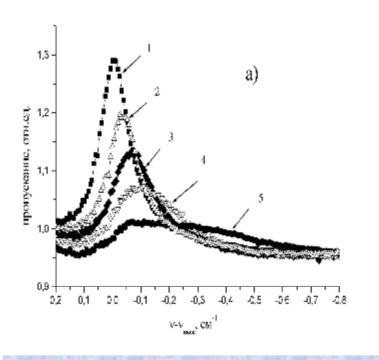
$$-\Delta D(n - n_{las}, H) = \Gamma_{y} / p \int_{0}^{p} \frac{K(q) \sin q \, dq}{(n - n_{las} - |\Delta n_{H}|)^{2} + \Gamma_{y}^{2}} + \Gamma_{x} / p \int_{0}^{p} \frac{K(q) \sin q \, dq}{(n - n_{las} + |\Delta n_{H}|)^{2} + \Gamma_{x}^{2}},$$
(3)

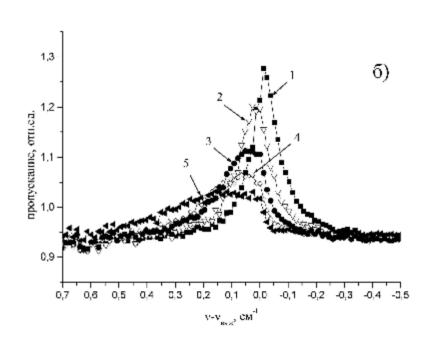

где Γ_y и Γ_x - однородные ширины БФЛ подуровней Q_y и Q_x , а $K(q) = const (3 + 2Cos^2 q + 3Cos^4 q)$.

Зависимость формы контура провала от величины внешнего поля в случае линейного (слева) и квадратичного эффекта



Зависимость формы контура провала от величины внешнего поля




• Результаты расчетов по формулам 1-3 для случая $\delta/(\Gamma/2) = 100$, $H/(\Gamma/2) = 0...35$.

Экспериментальная зависимость контура провала от величины внешнего магнитного поля

Экспериментальная зависимость контуров провалов от величины внешнего магнитного поля

- Al^+ - $\Phi T \coprod B \Pi B B$; а) провал выжжен при H=0, зарегистрирован при H=0 кЭ(1), H=40 кЭ(2),
- H=60 кЭ(3), H=80 кЭ(4), H=120 кЭ(5); б) провал выжжен при H=120 кЭ, зарегистрирован при H=120 кЭ(1), H=110 кЭ(2), H=100 кЭ(3), H=90 кЭ(4), H=70 кЭ(5).

Численные результаты

Из сравнения экспериментальных данных с результатами численных расчетов была определена величина среднего расщепления $\overline{\Delta n_0} \cong (115 \pm 20) \text{ см}^{-1}$ для системы $\text{Al}^+\text{-}\Phi\text{T}\+ \text{Ц}}$ в ПВБ и величина магнитного момента в состоянии S_1 молекул $\text{Al}^+\text{-}\Phi\text{T}\+ \text{Ц}}$: $\mu = (0.08 \pm 0.02) \text{ см}^{-1}/\text{к}$ Э. Используя полученные для $\text{Al}^+\text{-}\Phi\text{T}\+ \text{Ц}}$ в ПВБ величины μ и $\overline{\Delta n_0}$ мы определили величину среднего расщепления $\overline{\Delta n_0} \cong (80 \pm 20) \text{ см}^{-1}$ для системы $\text{Al}^+\text{-}\Phi\text{T}\+ \text{Ц}}$ в ПММА.

Из совокупности экспериментальных результатов для Zn-ФТЦ мы определили величину эффективного магнитного момента в состоянии S_1 молекул Zn-ФТЦ $\mu = (0.07 \pm 0.02) \text{ cm}^{-1}/\text{к}$ Э и получили оценки величин среднего расщепления уровня S_1 в ПВБ $\overline{\Delta n}_0 \leq 70 \text{ cm}^{-1}$ и в ПММА $\overline{\Delta n}_0 \leq 50 \text{ cm}^{-1}$. Для молекул Mg-ФТЦ в обеих матрицах были получены значения μ и $\overline{\Delta n}_0$ очень близкие к случаю цинкового комплекса.

Для всех исследуемых металлокомплексов ФТЦ мы определили значения $\Lambda = \mu/\beta = 1.5 - 1.7 \ (\beta - \text{магнетон Бора}).$

Теоретические расчеты для свободных молекул фталоцианинов дают $\Lambda = 3.0$. Наиболее вероятной причиной уменьшения эффективного значения Λ является янтеллеровское взаимодействие в молекулах.

Селективная спектроскопия примесных молекулярных систем

Оптика и спектроскопия, т.98, вып.5, 2005 Памяти профессора Р.И.Персонова

- Участники работы:
 - В. Н. Крашенинников
 - Б. М. Харламов
 - Е. П. Снегирев
 - А. А. Горшелев

Ф. Хмура (МЛСМПиНТ)

Работа выполнена при поддержке Программы ОФН РАН «Оптическая спектроскопия и стандарты частоты», проект №4.3. и РФФИ, проект №03-02-17449.