HTO detection using TDLS

A.Nadezhdinskii, Ya.Ponurovskii, D.Stavrovskii

DLS LAB

A. M. Prokhorov General Physics Institute of RAS 38 Vavilov str., 119991 Moscow, Russia. E-mail: Nad@nsc.gpi.ru

G.Grigoriev, Sh.Nabiev

Institute of Molecular Physics of RRC "Kurchatov Institute" Kurchatov sqv.1, 123182 Moscow, Russia

Introduction

Reactors with heavy water

D_2O , DTO

Heavy water leakage to atmosphere due to isotope exchange with atmosphere water

 D_2O , $DTO + H_2O \Rightarrow HDO$, HTO

Neutrons interaction with atmosphere water

 $n + H_2O \Rightarrow HDO$ $n + HDO \Rightarrow HTO$

Objective: using TDLS detect increase of HDO concentration and HTO presence

Heavy water

Natural abundance of different water isotopomers.

Molecule	[1, 2]
$H_2^{16}O$	0.997317
H ₂ ¹⁸ O	1.99983E-03
H ₂ ¹⁷ O	3.71884E-04
HD ¹⁶ O	3.10693E-04
HD ¹⁸ O	6.230E-07
HD ¹⁷ O	1.158E-07
D ₂ ¹⁶ O	2.41E-08

There is a number of effective methods of heavy water production: electrolysis, isotopic exchange and incineration of hydrogen enriched by deuterium. Today heavy water is produced by thousands of tons. The major property of heavy water is that it practically do not absorbs neutrons. That is why it is using in nuclear reactors (modern reactor needs 100-200 tons of heavy water with purity not less than 99,8%).

<u>Near facility D will be presented in</u> form of HDO molecule.

References:

[1] HITRAN (v11.0), http://cfa-www.harvard.edu/hitran

[2] L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 96, pp. 139-204 (2005)

Super-heavy water

Tritium (³H = T) – is radioactive super-heavy hydrogen radionuclide with mass number 3. Tritium has β decay with half-time 12,33 year. β particles has energy < 18,6 keV and free path length in atmosphere ~ 1mm. Natural tritium forms at bombardment of nitrogen by cosmic radiation neutrons:

 $^{14}N + ^{1}n = {}^{3}H + 4 \cdot {}^{4}He$ (each minute ~ 10 atoms/cm²). Similar reaction can take place also with neutrons from nuclear reactor. In nuclear reactors tritium is producing due to following reactions:

 ${}^{6}\text{Li} + {}^{1}\text{n} \rightarrow {}^{4}\text{He} + {}^{3}\text{H}; {}^{10}\text{B} + {}^{1}\text{n} \rightarrow 2{}^{\cdot4}\text{He} + {}^{3}\text{H}; {}^{2}\text{H} + {}^{1}\text{n} \rightarrow {}^{3}\text{H}$ Consequently, tritium escapes from different nuclear fuel processes and from used fuel elements and can be signature of un-legal nuclear activity. <u>In atmosphere tritium will be</u> <u>presented in form of HTO molecule.</u>

Water spectroscopy (references)

 H_2O spectra were investigated recently with very high sensitivity [3], while HDO spectra were obtained only for natural abundance. For HTO there are only 4 papers [4-7]. Experimental spectra of v_2 [4] and v_1 [6] bands and their theoretical analysis [6, 7]. Up to authors knowledge there is no information about v_3 band. Paper [5] is related to trace HTO detection.

References:

[3] R.Toth, Linelists of water vapor parameters from 500 to 8000 cm-1,

ttp://mark4sun.jpl.nasa.gov

[4] P. P. Cherrier, P. H. Beckwith and J. Reid, Linewidths and linestrengths in the v2 band of HTO as measured with a tunable diode laser, *JMS*, *121*, *69-74 (1987)*[5] Pierre P. Cherrier and John Reid, High-sensitivity detection of tritiated water vapour using tunable diode lasers, <u>Nuclear Instruments and Methods in Physics Research</u>
<u>Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume</u>
<u>257</u>, 412-416 (1987)
[6] S. D. Cope, D. K. Russell, H. A. Fry, L. H. Jones and J. E. Barefield, Analysis of the v₁ fundamental mode of HTO, JMS, 127, 464-471 (1988)
[7] O. N. Ulenikov, V. N. Cherepanov and A. B. Malikova, On analysis of the v₂ band of the HTO molecule, JMS, 146, 97-103 (1991)

Water molecule vibration modes

Isotope shifts of water vapour bands (H_2O , HDO, HTO).

Spectral ranges for HTO detection

Isotope shifts of water vapour bands (H_2O , HDO, HTO).

Spectra of H_2O (black) and HDO (red). Blue - HTO bands.

HTO absorption bands:

 v_2 – **possible.** The same spectral range as for UF₆ enrichment measurement.

$\underline{v_1} - possible$.

 v_3^- No advantage with respect to $2v_3$.

 $2v_1$ – possible.

 v_1+v_3 – Too weak, no advantage with respect to $2v_3$.

 $2v_3 - possible$. Below we'll consider possibility of HTO detection in this band.

Advantage and disadvantage of 2v₃

Absorbance spectrum of water vapor with natural isotopes abundance:

L = 39 m, P = 5 Torr

Advantages:

- 1. It is possible to measure all hydrogen and oxygen isotopes in the same spectral range.
- 2. DL are commercially available, reliable, and not very expensive.

Advantage and disadvantage of 2v₃

Transmission spectra of water vapor with natural isotopes abundance (L = 39 m):

Black: Water vapor with $P_{H2O} = 5$ Torr (the same as on previous slide).

Blue: Atmosphere air, $P_0 = 760$ Torr, 50 % of humidity.

Red: The same as above, $P_0 = 30$ Torr.

Disadvantage: it is necessary to measure trace absorption in presence of strong water lines. It needs low pressures. To increase sensitivity sample enrichment is required (similar to UF_6 gas handling system). $2v_1$ (around 4600 cm⁻¹) is free of these disadvantage and can be considered as alternative even in case of worse sensitivity.

2v₃ water spectra

HITRAN spectra of H₂O (black) and HDO (red)

Water samples spectra were recorded using 3 Diode Lasers (blue) operated at 1.44, 1.39, and 1.36 µ

Analysis of water vapor spectra near 1.39 μ are presented in present paper.

TDLS spectra

Spectra of 3 water samples were recorded using TDLS in spectral range 7166 – 7192 cm⁻¹ (L = 2 m). Sample H2O – natural water; Sample HDO – 50% of heavy water and 50 % of natural water; Sample HTO – 50% of heavy water from reactor and 50 % of natural water.

TDLS spectra of H2O (black) and HDO (red) samples

Spectral lines identification

Spectra of 3 water samples were recorded using TDLS in spectral range 7166 – 7192 cm⁻¹ (L = 2 m). Sample #1 – natural water; Sample #2 – 50% of heavy water and 50 % of natural water; Sample #3 – 50% of heavy water from reactor and 50 % of natural water.

TDLS spectra of all samples #1 (black) and #2 (red) Due to HITRAN, 38 lines here belongs to HD¹⁶O. In present spectra 51 HD¹⁶O and 14 HD¹⁸O new lines were observed and measured.

TDLS spectra

Spectra of 3 water samples were recorded using TDLS in spectral range 7166 – 7192 cm⁻¹ (L = 2 m). Sample #1 – natural water; Sample #2 – 50% of heavy water and 50 % of natural water; Sample #3 – 50% of heavy water from reactor and 50 % of natural water.

TDLS spectra of Samples #3 (red) and interference (blue) In present spectra 12 HTO lines were observed and measured. Estimated T:D value was found to be of the order of 10⁻⁴.

HTO calibration

Direct calibration of HTO is impossible. Hence, theoretical modeling is necessary.

Lines having largest integral intensity in J manifold of H_2O (black), HDO (red), HTO (blue).

HTO sensitivity estimation

L, m	39	Present cell	
P, Torr	5	Low preasure	
Absorbance	73	Calculated using HITRAN	
		Measured NEA in our	
NEA	1.00E-07	systems	
NEP, Torr	1.37E-09		
NEN, 1/cm3	4.85E+07		
t, year	12	Half life time of tritium	
t, days	4380		
t, sec	3.78E+08		Noise equivalent
NEDecays, Bq/m3	1.28E+05		<u>HTO detection for</u>
		From Alvarez, Daniela	<u>present instrument</u>
		(Brasil): "discharges numbers	<u>is 3.5 µCi/m³. It is</u>
		measured in the stack of one of our nuclear plants for	<u>10 times better</u>
Brasil, Bq/m3	2.20E+05	tritium is 220000 Bq/m3"	than in mid IR [5]
			and is close to
NEDecays, µCi/m3	3.46		<u>technical</u>
Brasil, μCi/m3	6		<u>requirements.</u>