

QUARTZ ENHANCED PHOTOACOUSIC SPECTROSCOPY WITH NEW ANTIMONIDE COMPOUNDS

A. Vicet, T. Nguyen Ba, Y. Rouillard, and Q. Gaimard.

L. Cerutti, R. Teissier, A. Baranov, M. Bahriz, E. Tournié

Institut d'Electronique du Sud, UMR 5214, Université Montpellier 2 – CNRS, F-34095 Montpellier cedex 5 (France) – groupe nanomir

a.vicet@univ-montp2.fr

Université Montpellier 2 - cc/067 Place Eugène Bataillon 34095 Montpellier CEDEX 5 France

Institut d'Electronique du Sud (IES) UMR CNRS 5214

JW5

130 researchers:

- 64 Profs/associate prof
- 8 researchers CNRS
- 58 PhD students and post-doc

29 engineers, technicians, administrative

IES

3

- 16 ITA CNRS
- 11 BIATOSS des Universités
- 2 BIATOSS Contractuels

Main skills / Expertise

IES (UMR CNRS-UM2 5214)

4

JW5

Groupe nanoMIR

<u>nano</u>structures components for <u>Mid-Infra-R</u>ed

From materials... to prototypes Spectral range : 2 to >20 µm

- 8 prof/ass prof (1 on TDLS)
- 4 DR/CR
- 5 engineers/technicians
- 13 PhD students (1 on TDLS) + 1 post-doc

Sponsors: EC (ICT, FP6 & 7), ANR, DGA, Region, CNRS, ADEME, Industry, ... EquipEx: EXTRA "EXcellence cenTRe on Antimonides" (2012-2019)

Ressources of nanomir group

- **Design/modelisation** of structures
- 2 MBE reactors dedicated to antimonides (*Riber 11 cellules ; Varian 8 cellules*)
- Caracterisation benchs, for materials and compounds :
 - PL/transmission with temperature
 - P I, I V, λ I, spectral response
 - photo-voltage surface spectroscopie
- Devices processing

- Gas detection setups
- Common Services (UM2) for:
 - Caracterisations : X Rays, AFM, EFM,...
 - Devices processing

L = 12.8m

+ équipex EXTRA

- Single frequency Antimonide compounds in the infrared
 - Materials/spectral ranges
 - QW structures
 - QCL structures
- Applications
 - Collaborations
 - QEPAS sensing
 - Perspectives
- Conclusion

Antimonide compounds

« 6.1 Å semiconductors »: GaSb, InAs, AISb, InSb and alloys AIGaAsSb, GaInAsSb, AIGaInAsSb... quasi-lattice matched on GaSb

0.15 eV < Bandgap < 2 eV

Sb-technology : Small gaps, Type I to Type III alignements,

SC2

b) Puits quantique Type**-Ⅱ**

SC2

c) Puits quantique Type-III

low masses, high mobilities, Flexible : many alloys

Inter-bands or intra-bands

Antimonide compounds

Infrared spectral range

Antimonide compounds

Transitions

Large Offsets for **cascade** lasers

The basic device in the GaSb technology: typical band-structure design

Lattice-matched $Al_{0.9}Ga_{0.1}As_{0.08}Sb_{0.92}$ cladding layers

Strained (ϵ ~1.5 – 2%) GaInAsSb quantum wells

Diodes lasers GalnAsSb/AlGaAsSb (EELs)

$2 \mu m < \lambda < 3 \mu m$: GalnAsSb / AlGaAsSb (quaternary materials)

FP semiconductor lasers are not perfect sources !

- strong divergence

JW5

- multimode emission
- \rightarrow need frequency filtering

External cavities – grating coupling
Multi-sections lasers - DBR
Coupled cavities (C3 lasers)
DFB

Tricky signal processing

ume.

Diodes lasers GalnAsSb/AlGaAsSb (EELs)

Naehle et al., Electron. Lett., 47, 46 (2011)

Diodes lasers GalnAsSb/AlGaAsSb (EELs)

LC DFB \rightarrow index coupled DFB

Perspectives : ANR NexCILAS : index-coupled DFB

DFB orders 1 (low losses) to 4 (easier to process)

Alternative technology to complex-LC-DFB : index coupling \rightarrow better performances

2 explored ways :

\rightarrow Sidewall corrugation

 \rightarrow structure **regrowth** : corrugation on the ridge

Diodes lasers GalnAsSb/AlGaAsSb (EELs)

C3 lasers

- Cleaved Coupled cavities with air gap
- Mecanic Instability

Projet ANR CRISPI (2007-2010) : C2-PhC Coupled cavities lasers with photonic cristals

- no clivage
- Controle of the intra-cavity reflectivity

EEL PhC-coupled cavities lasers

G.P Agrawal, N.K Dutta, 1986.

EEL PhC-coupled cavities lasers

Very high tuning potential : gain curve + longitudinal modes 70 nm 4 nm

active-passive Configuration : Passive cavity = losses modulator

Diodes lasers GalnAsSb/AlGaAsSb (EELs)

EEL PhC-coupled cavities lasers

Collaboration LAAS, ANR CRISPI project SMSR ~25 dB @ 2.60 μm AAS-CNRS 1.45 µm Moumdji et al., Electron. Lett. 45 (2009) 1119 AAS 20 0kV 7 4mm x30 0k SE(L Miroir intra cavité cavités àCP 1.2 0 -5 3 power, mW/facet voltage, ^V 8°0 ₁ SMSR, dB -10 lc 25 dB _ (front section): 2 75 mA to 10 mA -15 . 50 m/ -20 0.4 1 30 mA -25 -20 mA 2,58 2,59 2,60 2,62 2,61 15 mA 10 m 0.0 0 λ, µm 0 10 20 30 40 50 60 injected current, I_p (back section), mA

M. Jahjah, S. Moumdji, Electron Lett. 4 (5) *pp* 277 (2012)

Diodes lasers GalnAsSb/AlGaAsSb (EELs)

- High SMSR
- good tuning properties
- A tricky process

EEL PhC-coupled cavities lasers

Perspectives : MIDAS project : Multiplexed infrared diodes for absorption spectroscopy (P2N 2011)

- First All-CP Sb-based Lasers
- Based on CRISPIS progresses

- Structures W3 or W5 : larger guides easier
- Theoretical studies
 - Active region thickness,
 - shape of CP,
 - nb of patterns

Quantum cascade lasers InAs/AISb (QCLs)

Band offsets in III-V semiconductor technologies

Quantum cascade lasers InAs/AISb (QCLs)

Electron. Lett. 45 (2009) 1028-1030 Cathabard, O., Electron. Lett. **45** (2009) 1028-103 O. Cathabard, Appl. Phys. Lett. **96** (2010) 141110

Short wavelength InAs/AISb QCLs

Quantum cascade lasers InAs/AISb (QCLs)

InAs/AISb QCLs emitting near 20 µm

- Single frequency Antimonide compounds in the infrared
 - Materials/spectral ranges
 - QW structures
 - QCL structures
- Applications
 - Collaborations
 - QEPAS sensing
 - Perspectives
- Conclusion

Applications

Vicet, et al. Spectrochimica Acta A, Vol 58a (11), pp2405-2412, 2002

• Direct detection (SA)

V. Zeninari, Infrared Physics and Technology, 45, 2004

• Cavity ring down spectroscopy (LSP)

Kassi, S. Opt. Express 14 (2006) 11442-11452

• Photoacoustic spectroscopy (EPFL)

S.Schilt, Spectrochimica Acta A, 60,2004.

• Mirage detection (IPEIN)

Hamdi A., J. of Physics : Conference Series 214, 2010

Laser diccle À_{Laser} - 2.062 (m

Rice Uni, USA

Applications : QEPAS sensing

Basics

- Photoacoustic detection without resonnant cell
- Very high quality factor of the QTF
- « Universal » detector : adapted to each source wavelength

Basics

Sound wave generation \rightarrow Piezo signal S

Commercial QTF, Q from 10^4 to 10^6 (vacuum)

 f_0 QTF = 32,7 kHz Laser Modulation : f_0 ($f_0/2$ si 2f) if $λ_0 = λ →$ absorption if $λ_0 ≠ λ →$ no absorption

K: constant α: absorption coef (cm⁻¹) *P*: optical power (mW) Q: QTF quality factor f_0 : QTF resonant frequency (Hz)

Q factor

QTF response

Modelisations

Modelisations

- Sound source = line or point
- Frequency study \rightarrow evaluation of f₀, Q
- Gas and pressure can be changed
- Piezoelectric study : evaluation of displacement and surface charges

Results on CH₄ sensing

 μR μR μR $\frac{\mu}{\lambda} < l < \frac{\lambda}{2}$

 λs : sound wavelength depending on gas $\lambda s = 0.88 \times 10^{-2} m @ f = 32.768 \text{ kHz}$

Dimensions : I=4.4 mm, DI=0.5 mm $\rightarrow \lambda s/2$ (fondamental mode)

P: pression de l'onde acoustique

35

« on-beam » μR configuration :

- Lower Q
- But higher acoustic interaction
 - → 10x gain

Results on CH₄ sensing

FP Laser 2.3 µm

C2 phC Laser 2.3 µm

M. Jahjah, Electron Lett. 4 (5) pp 277 (2012)

Detection limit : 400 ppbv CH_4 (1 σ)

128

 Δv = half width at half maximum (cm⁻¹) Δ = modulation amplitude Δ = m. Δv , m = modulation parameter

J. Reid and D. Labrie: "Second-Harmonic Detection with Tunable Diode Lasers- Comparison of Experiment and Theory", Appl. Phys. B **26**, 203-210 (1981)

Theoretical optimum : m = 2,2

JW5

Applications : QEPAS sensing

Results on CH₄ sensing

C2 Ph C Laser $2\Delta v = 5,06 \text{ Ghz } (P_{atm})$ $\sigma = 4242,1807 \text{ cm}^{-1}$ S = 1,398.10⁻²¹ cm⁻¹/mol.cm⁻² Measurement for 1% CH₄

Results on CH₄ sensing

How to improve ?

- \rightarrow Increase the laser power : QCL ??
- \rightarrow Focus on stronger lines
- → Improve optical design, positions µR

- → Electronics (TA, lockin, compensation RAM...)
- \rightarrow Allan variance
- \rightarrow multigaz

Detection limit: 100 ppbv CH₄ (1 σ) $\alpha_{min} = 1.92 \times 10^{-8} \text{ cm}^{-1}$ Tc = 1s

Perspectives : applications

- Compact system: in situ measurements inside/outside
 High CH₄ emission: waste treatment(ADEME), lagoons(INRA)
 - climat controlled sites for tests : ECOTRON, INRA
 - automobile industry(JRC-ISPRA)
 - Formaldehyde ?

Perspectives : compact system

ANR NexCILAS : * Next generation of Compact Infrared Laser based Sensor for environmental monitoring (Blanc inter 2011)

Complete cap removal, wires unsoldered

Isolated mount \rightarrow decrease noise

IES | Institut d'Électronique du Sud

Conclusion

- Antimonide compounds
 - A complex but versatile material system
 - Many progresses in MBE growth during the past 10 years
- Many compounds :
 - lasers Diodes 2 3 µm: mature

- Strong work on : QCLs, V(E)CSELs and III-V silicon integration
- Applications : miniaturisation towards lab-on-chip ?

Thanks !

- Jean-Marc ANIEL [AI CNRS]
- Michaël BAHRIZ [MC]
- Alexei BARANOV [DR]
- Guilhem BOISSIER [IE1 CNRS]
- Laurent CERUTTI [MC]
- Philippe CHRISTOL [Pr]
- Arnaud GARNACHE [CR]
- Pierre GRECH [IE1 CNRS]
- Grégoire NARCY [IE2 CNRS]
- Jean-Philippe PEREZ [MC]
- Anne PONTIER [TCH CN RF UM2]

- Jean-Baptiste RODRIGUEZ [CR]
- Yves ROUILLARD [MC]
- Thierry TALIERCIO [MC]
- Roland TEISSIER [DR]
- Éric TOURNIE [Pr]
- Aurore VICET [MC]
- Johan ABAUTRET [Doctorant]
- Attia BENSELAMA [Doctorant]
- Marie DELMAS [Doctorant]
- Axel EVIRGEN [Doctorant]

- Quentin GAIMARD [Doctorant]
- Youness LAAROUSSI [Post-Doctorant]
- Pierre LAFFAILLE [Doctorant]
- Guillaume LOLLIA [Doctorant]
- Karine MADIOMANANA [Doctorant]
- Tong NGUYEN BA [Doctorant]
- Vilianne NTSAME GUILENGUI [Doctorant]
- Mohamed Seghir SEGHILANI [Doctorant]
- Rachid TAALAT [Doctorant]

Fundings/collaborations

Les travaux de l'IES dans le domaine de l'infra-rouge ont été ou sont financés par les Investissements d'Avenir, la Région Languedoc-Roussillon, l'ANR, la DGA, le CNRS, l'UM2, la Commission Européenne. Les partenariats sont nombreux au niveau académique (ONERA, LPN, IOGS, LiPHY, UTT, LAAS, INSA, IEMN, CEA, Uni. Würzburg, loffe Inst., Paul-Drude-Inst., ADEME, IEF, MPQ ...) et industriel (INNOPTICS, III-V lab, nanoplus, Photonis, SAGEM, SOFRADIR, THALES,..).

cnrs

Antimonide Interband cascade lasers (ICLs) (NRL, USA)

Vurgaftman et al., NJP 11, 125015 (2009) Vurgaftman et al., Nature Com. 2, 585 (2011) Mever et al., Photonics West 2013

www.ies.univ-monto2.fr

Can also be cited : uni Wurtzburg (poster B16) + nanoplus IES | Institut d'Électronique du Sud

ume.