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INTRODUCTION
Last decades of high-resolution spectroscopy have revealed

inefficiency of molecular line shape characterization by ordinary Voigt
function if high accuracy is needed for extracted pressure broadening and

shifting coefficients. Particularly, it is the case of collisional line narrowing at
low pressures (typically 1-760 Torr) usually attributed to Dicke effect and

speed dependence of line broadening and shift.
Recent classification [R.Ciurylo 1998] numbers 16 (!!!) different

profiles accounting for (or not) several physical mechanisms influencing the
shape of isolated spectral line in the impact approximation.

Though numerous, these accountings are not self-consistent. For
example, traditional profiles (Galatry, Rautian, speed-dependent Voigt, etc.)
widely used in experimental fitting practice contain parameters that serve as
only "ad hoc" values corresponding to the considered borderline profiles,
without referring to the narrowing process actually involved.

The solution of the inverse spectroscopic problem (i.e.
extracting of broadening and shifting coefficients from the

line shape) is highly sensitive to measurement errors and to
the defects of spectral shape model
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In order to accomplish an accurate and physically substantiated fitting
of measured spectra it is necessary to apply self-consistent theory of line
profile useable in any condition. It is clear that an adequate theory should
include both effects of narrowing (confinement phenomenon and speed
dependence of relaxation parameters), naturally being valid for an
arbitrary mass ratio of active and buffer molecules. Also such analysis
must reflect the correlation which obviously exists between velocity
change and dephasing (broadening and shift) in collisions. All indicated
demands are fulfilled in recent generalized theory

[R. Ciurylo, A.S. Pine and J. Szudy 2001].

Indicated generalized theory involves several parameters and functions of
velocity which should be determined only from special molecular
scattering calculations (namely, parameters of "hardness" of collisions, of
correlation of velocity-changing and dephasing collisions, diffusion
constant, speed dependence of line broadening and shift).

XXIV 
2010, . 



4

To avoid importing systematic errors, scattering calculations of all above
mentioned parameters and functions should employ:

realistic anisotropic intermolecular potential energy surface (PES)
accurate simulation of molecular motion during collision

Classical trajectory method is very promising to
this effect being quite accurate, rapid and allowing
for visual and self-consistent characterization of
internal (rotational , vibrational) and translational

motions of colliding molecules
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Generalized theory of line profile [Ciurylo et al. 2001]
includes:

speed-dependence of broadening and shift
partial  "hardness" of collisions

partial correlation of velocity-change and broadening in collisions
Spectral distribution of line intensity
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Generalized theory of  line profile (continued)

The Dicke narrowing and the  correlation between dephasing and velocity-changing
collisions  are described by two speed-dependent parameters (v) and (v)
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"Diffusion"  frequency of collisions
(D is diffusion coefficient)

Parameter - describes the "hardness" of the velocity-changing collisions
( = 0 – pure soft , =1 – pure hard collision)

Parameter - describes partial correlation between velocity-changing and
dephasing collisions ( = 0 – no correlation , = 1 – full correlation)

- frequency, 0 – line center, k = /c - wave  number,
mA – mass of active molecule, v - absolute speed of active molecule

Functions of absolute speed v:
(v) – line-width (HWHM), (v) – line-shift ,

(v) , (v) – additional functions
(arising either from finite duration of collisions

(non-impact) or  line-mixing )

Here  we set (v) +i (v) =0

Limitations of theory:
width = shift

diff – no v - dependence
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Particular cases of generalized line profile
(no dispersion asymmetry: (v) +i (v) =0)

Speed-dependent effects included: = (v), = (v)

=0       Speed-dependent asymmetric Rautian-Sobel'man profile (Ciurylo 1998)
=1        Partially correlated speed-dependent Rautian profile (hard collisions, Pine 1999)
=0       Rautian-Sobel'man profile (soft&hard collisions, Rautian&Sobel'man 1967)
= 1, =0    Speed-dependent Nelkin-Ghatak profile (hard collisions, Nelkin-Ghatak 1964)
=0 , =0    Speed-dependent Galatry profile (soft collisions, Rautian&Sobel'man 1967)
= 0, diff = 0 (no velocity-changing collisions)   Speed-dependent Voigt profile (Berman

1972, Ward-Coopper-Smith 1974)
(v) =(1- ) diff, (v) = diff - [ (v) + i (v)]  - fully correlated speed-dependent Rautian-

Sobel'man profile (Lance&Robert 1998)

No speed-dependent effects: (v)=const , (v) =const

=0 , =1        Correlated Galatry profile (soft collisions, Rautian&Sobel'man 1967)
=0 , =0        Galatry profile (soft collisions, Galatry 1961 )
= 1, =0        Nelkin-Ghatak profile (hard collisions, Nelkin-Ghatak 1964)
=0                 Rautian-Sobel'man profile (soft&hard collisions, Rautian&Sobel'man 1967)
= 0 diff = 0  (no velocity-changing collisions)       Voigt profile
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Required information for operation with generalized
speed-dependent line profile :

1) dependence of line width (v) and line shift (v) on absolute velocity
v of active molecules;

2) correlation coefficients between velocity changing processes and
broadening ( W ) and shifting ( S ) of given spectral line in collisions;

3) “diffusion” frequency of collisions diff ;

4) parameter of “hardness” of collisions

Bulk of  this information was produced by
detailed classical trajectory calculation of HF-Ar collisions:

Exact 3D classical trajectory scheme [M.D.Pattengill 1977]
Ab initio vibrationally dependent HF-Ar PES  H6 (4,3,2)  [J.Hutson 1992]

Classilcal theory for impact broadening and shift [R.Gordon 1966]
Computational scheme [ S.Ivanov et al. 2005; S.Ivanov, O.Buzykin 2008]
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Speed-dependence of line width (v) and shift (v)
on absolute velocity v of active molecule
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f(vrel|v) is  conditional Maxwell distribution  [Luijendijk 1977, Pickett 1980];
vrel is relative speed of colliding pair, v is absolute speed of active molecule
v2 is rms speed of the perturber molecule (Ar)
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Keilson-Störer model  for evaluation
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Parameter - partial correlation
between velocity-changing and dephasing collisions

It is simply the correlation coefficient of two random processes
X  and Y (X = xi - change of relative velocity and Y = yi – line-broadening (or

shift)  in collisions i = 1,.., N)
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Widths and shifts of HF lines in R-branch of 0-v absorption band.
HF-Ar at T=296 K
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Correlation parameters W , S for dephasing and velocity
changing processes in  collisions. HF-Ar T=296 K
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This may lead to additional errors. This is principal defect of general
line shape  theory of Ciurylo, Pine and Szudy

Vibrational dephasing plays remarkable role in line-shifting
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ISO trajectories work reasonably
in predicting velocity dependence of
line width (v) and shift (v) . But not
accurately.

Power law y=a·xb is not always an
adequate approximation for (v)
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CONCLUSIONS
Classical trajectory method is an efficient tool for obtaining all
necessary information for application of general speed-dependent line
shape  theory in fitting practice .
Correlation parameter S for line shift absolutely does not coincide with
that for  line width W . This is one of possible defects of general line
shape  theory of Ciurylo, Pine and Szudy.
Systematic errors for HF diffusion frequency in Ar mixture imported by
the application of isotropic trajectories reach 6%.
Isotropic trajectories generally work reasonably in predicting velocity
dependencies of line width (v) and line shift (v) for HF lines in Ar
mixture. But not always accurately.
Power law y=a·xb is not always an  adequate approximation for speed
dependence of line width (v).
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