Параметры контуров спектральных линий мультиплета R9 полосы 2v₃ метана уширенных азотом и неоном.

Многоспектральная обработка оптико-акустических спектров с сильно перекрывающимися линиями.

В.А.Капитанов, А.Е.Протасевич, К.Ю.Осипов, Ю.Н.Пономарев

Цель работы

- Определение параметров модельного спектра сильно перекрывающихся линий поглощения мультиплета R9 метана уширенных азотом и неоном
- Исследование влияния вида модельного контура на точность описания экспериментальных спектров поглощения при вариации давлений уширяющих газов

Двухканальный диодный лазерный ОА спектрометр

Kapitanov V.A., Ponomarev Yu.N., Tyryshkin I.S and Rostov A.P.: Spectrochimica Acta Part A, 66A, 4-5, 811-818 (2007)

интерферомет

- Вакуумны й пост
- **контроллер**
- Диодны й лазер

ОАД ячей ки

Методика измерений

- Калибровка частотной шкалы и измерение положения центров линий поглощения
- Калибровка ОАД и определение сечения поглощения при разных давлениях

Калибровка частотной шкалы и измерение положения центров линий поглощения

Калибровка частотной шкалы и измерение положения центров линий поглощения

Рабочая панель системы регистрации LabView

Калибровка ОАД и определение сечений поглощения при разных давлениях

Основное соотношение ОА метода

$$\frac{U_{OAD}(v, P_{br})}{W_{0}(v)} = R(P_{br}) * n(P_{br}) * \sigma(v, P_{br}) + R(P_{br}) * \alpha_{b}$$
(1)

При условии:
$$n(P_{mix})^* \sigma(v, P_{mix}) << 1$$

 $R(P_{mix})$ — чувствительность ОАД; $n(P_{mix})$ — концентрация поглощающих молекул; $\sigma(v,P_{mix})=\Sigma_i \ S_i \cdot F(v-v_{io},\gamma,\beta,...)$ — сечение поглощения; S_i — интенсивность i-той линии поглощения; $F(v-v_{io},\gamma_i,\beta_i,...)$ — контур i-той линии поглощения; $R(mix)\alpha_b$ — коэффициент фонового поглощения

$$\frac{U_{OAD}(v, P_{mix})}{W_0(v)} = \sum_{i}^{n} S_i^{meas}(P_{mix}) \cdot F(v - v_{i0}, \gamma_i, \beta_i, ...) + R(P_{mix}) * \alpha_b$$
 (2)

Калибровка ОАД и определение сечений поглощения при разных давлениях

Из подгонки модельного спектра к экспериментальным ОА спектрам (2), зарегистрированным при различных давлениях определяются

 $S_{i\,meas}(P_{mix})$ и вклад фонового поглощения $R(mix) \cdot \alpha_b$.

Учитывая, что в (1)

$$\sigma(\mathbf{v}, \mathbf{P}_{mix}) = \mathbf{\Sigma}_i \, \mathbf{S}_i \cdot \mathbf{F}(\mathbf{v} - \mathbf{v}_{i0}, \mathbf{\gamma}_i, \boldsymbol{\beta}_i, \dots) \tag{3}$$

И

$$\Sigma_i S_i = const$$
 - известная величина (4)

Приравнивая правые части (1), (2) и интегрируя по частоте

$$R(P_{mix}) \cdot n(P_{mix}) \cdot \sum_{i}^{n} S_{i} = \sum_{i}^{n} S_{i}^{meas}(P_{mix})$$

$$R(P_{mix}) \cdot n(P_{mix}) = \sum_{i}^{n} S_{i}^{meas}(P_{mix}) / \sum_{i}^{n} S_{i}$$

сечения поглощения при разных давлениях можно записать

$$\sigma(\nu, P_{mix}) = \sum_{i}^{n} S_{i} / \sum_{i}^{n} S_{i}^{meas} (P_{mix}) \cdot \left[\frac{U_{OAD}(\nu, P_{br})}{W_{0}(\nu)} - R(P_{mix}) \cdot \alpha_{b} \right]$$
 (5)

ОА-Спектр метана в диапазоне 6010-6200 cm⁻¹

Kapitanov V.A., Ponomarev Yu.N., Tyryshkin I.S. and Rostov A.P. // Spectrochimica Acta Part A. 2007. V. 66, N 4-5, P. 811-818.

http:\\spectra.iao.ru (HITRAN 2008)

БД HITRAN 2008 содержит - 300 линий ОА спектр метана – более чем 600

Определение формы и параметров контуров спектральных линий в значительной степени затруднено:

- Наличием большого количества слабых линий поглощения параметры которых определяются с большими ошибками (>40 линий)
- Сильным перекрыванием спектральных линий мультиплета даже при допплеровском уширении и T=296°C
- Столкновительными уширением, сужением и интерференцией спектральных линий
- Возможными неточностями в идентификации линий

Спектр СН₄ моделируется 11-ю линиями с интенсивностью S_i >6E-24

ОАД спектр + симуляция Никитин

Определение параметров контура перекрывающихся линий из подгонки каждого давления отдельно приводит к значительным систематическим ошибкам

Mixture $CH_4:N_2=1:15$ (ДЛС 2010)

Pine A. S. Line mixing sum rules for the analysis of multiplet spectra // JQSRT 1997. Vol. 57. № 2. pp. 145-155.

Модельный коэффициент поглощения (см⁻¹) для одного спектра выражается формулой:

$$K(\omega) = \frac{1}{\sqrt{\pi}} \sum_{m} \frac{\xi_{m} \operatorname{Re} P(x'_{m}, y_{m}, \zeta_{m}) + \eta_{m} \operatorname{Im} P(x'_{m}, y_{m}, \zeta_{m})}{\sigma_{m}}$$

 ω - волновое число (см⁻¹);

Доплеровская полуширина линии с номером m на высоте e^{-1} от максимума линии (см⁻¹):

 $\sigma_m = \omega_m^0 \sqrt{\frac{2k_B T}{Mc^2}}$

 ω_{m}^{0} - волновое число центра линии с номером m при нулевом давлении (см⁻¹);

 $k_{\scriptscriptstyle R}$ - постоянная Больцмана;

T - температура;

C - скорость света в вакууме;

M - масса молекулы активного газа.

Одновременная подгонка экспериментальных спектров, зарегистрированных при $T=296^{\circ}$ С и разных парциальных давлений смеси $CH_4:N_2$ Модельный спектр описывается 11-ю линиями с $S_i>6E-24$ cm/mol

ОАД спектр

${\rm CH_4\text{-}N_2}$ retrieved line profile parameters of the $2{\rm v_3}$ band R9 multiplet, Rautian-Sobelman model.

v _o , cm ⁻¹ wavenumber	S, cm/mol, intensity × 10 ⁻²²	γ_L , N_2 , cm^{-1}/atm	δ , N_2 , cm^{-1}/atm	Dike narrowing parameter, β, ×10 ⁻³
6105.3693(12)	0.0748(39)	0.0807(97)	-0.011(13)	-
6105.6260154(97)	7.1550(36)	0.052737(89)	-0.011201(91)	9.77(31)
6105.99734(36)	0.1198(30)	0.056 (Fixed)	-0.0105(Fixed)	-
6106.037465(28)	3.4704(0)	0.04682(39)	0.00289(46)	-
6106.049412(14)	7.9967(48)	0.06524(22)	-0.00987(28)	-
6106.19620(23)	0.5826(71)	0.0911(20)	-0.0241(24)	-
6106.220922(37)	2.8744(64)	0.05320(30)	-0.00591(34)	-
6106.251965(31)	2.9406(53)	0.05084(27)	-0.02642(31)	-
6106.283401(34)	4.935(14)	0.05796(26)	-0.01498(30)	-
6106.30165(52)	0.277(13)	0.0457(31)	-0.0467(44)	-
6107.16782(18)	0.42060(38)	0.0611(17)	-0.0104(18)	6(6)

Сравнение с литературными данными.

Одновременная подгонка экспериментальных спектров, зарегистрированных при T=296°C и разных парциальных давлений смеси CH₄:Ne
Модельный спектр описывается 11-ю линиями с S_i>6E-24 cm/mol

CH₄:Ne-(1:40).

Line mixing CH4:Ne

$\text{CH}_4\text{-Ne}$ retrieved lines profiles parameters of the $2v_3$ band R9 multiplet

Line mixing model (Pine A. S. JQSRT 1997. Vol. 57. № 2. pp. 145-155.)

v_0 cm^{-1}	S, cm/mol × 10 ⁻²²	γ_L , Ne, $cm^{-1}/atm \times 10^{-2}$	δ , Ne, $cm^{-1}/atm \times 10^{-2}$	β , $cm^{-1}/atm \times 10^{-2}$	η , $cm^{-2}/atm \times 10^{-3}$
6105.36875(27)	0.0750(13)	5.34(25)	-0.00(27)	-	
6105.6258930(27)	7.0457(12)	3.3746(25)	-0.1415(21)	1.0824(94)	
6105.99560(13)	0.1079(11)	3.5(Fixed)	-0.5 (Fixed)	-	
6106.039566(16)	4.438(10)	3.8459(85)	0.6985(97)	-	
6106.050820(10)	6.652(10)	4.1899(58)	-0.5090(69)	-	
6106.194805(51)	0.4934(17)	4.210(43)	-1.225(52)	-	
6106.2205803(86)	2.8876(17)	3.6599(99)	0.087(16)	-	1.702(95)
6106.2519971(75)	3.0585(16)	3.4237(85)	-0.930(15)	-	-1.702(Dept)
6106.2839776(49)	4.9943(19)	3.7921(64)	-0.5230(62)	-	
6106.300823(95)	0.2716(Fixed)	3.051(71)	-1.770(99)	-	
6107.168209(44)	0.4797(14)	4.004(44)	-0.492(38)	1.12(17)	

Сравнение параметров контура линий спектра поглощения метана в исследуемой области при разных столкновительных партнерах N₂ и Ne

Результаты

- Разработана, отлажена и протестирована на модельных и экспериментальных спектрах программа и методика одновременной подгонки нескольких экспериментальных спектров при разных парциальных давлениях смеси
- Зарегистрированы спектры мультиплета R9 2v₃ метана уширенного азотом и неоном и предложена методика калибровки ОА спектрометра
- Определены параметры контуров модельного спектра, описывающего с погрешностью не более 1% экспериментальный ОА спектр мультиплета R9 метана в диапазоне давлений 0.9÷35 кПа при уширении азотом и неоном

Выводы

- Разработанная программа и методика одновременной подгонки нескольких экспериментальных спектров при разных парциальных давлениях смеси позволяет восстанавливать параметры модельного спектра, который воспроизводит экспериментальные спектры во всем диапазоне давлений (0.9-35 кПа) при уширении N₂ и Ne неопределенностью << 1%;
- Использование контура Раутиана-Собельмана обеспечивает значительное уменьшение погрешности (более чем в 2÷4 раза) при описании изолированных линий в сравнении с контуром Фойгта, в то время как, контур Фойгта, в некоторых случаях, приемлем для описания контуров сильно перекрывающихся линий поглощения;
- Для решения обратной задачи определения параметров и формы контуров сильно перекрывающихся линий необходимо привлечение дополнительной информации в виде глобального расчета спектра (положение центров линий, соотношение интенсивностей) или привлечения экспериментальных данных полученных, например, методами нелинейной внутридопплеровской спектроскопии;
- Проблема учета базовой линии (вклад слабых линий?)– основная причина различия данных ОА- и Фурье-спектроскопии

Работа выполнена при поддержке программы ОФН РАН, проект 3.9.4. (эксперимент) и ООО "Брукер" (разработка программного пакета), гранта РФФИ, проект 10-05-00764-а.

Благодарю за внимание