Параметры контуров спектральных линий мультиплета R9 полосы 2v₃ метана уширенных азотом и неоном.

Многоспектральная обработка оптико-акустических спектров с сильно перекрывающимися линиями.

В.А.Капитанов, А.Е.Протасевич, К.Ю.Осипов, Ю.Н.Пономарев

Цель работы

- Определение параметров модельного спектра сильно перекрывающихся линий поглощения мультиплета R9 метана уширенных азотом и неоном
- Исследование влияния вида модельного контура на точность описания экспериментальных спектров поглощения при вариации давлений уширяющих газов

Двухканальный диодный лазерный ОА спектрометр

Kapitanov V.A., Ponomarev Yu.N., Tyryshkin I.S and Rostov A.P.: Spectrochimica Acta Part A, 66A, 4-5, 811-818 (2007)

Методика измерений

- Калибровка частотной шкалы и измерение положения центров линий поглощения
- Калибровка ОАД и определение сечения поглощения при разных давлениях

Калибровка частотной шкалы и измерение положения центров линий поглощения

Калибровка частотной шкалы и измерение положения центров линий поглощения

Рабочая панель системы регистрации LabView

Калибровка ОАД и определение сечений поглощения при разных давлениях

Основное соотношение ОА метода

$$\frac{U_{OAD}(\nu, P_{br})}{W_0(\nu)} = R(P_{br}) * n(P_{br}) * \sigma(\nu, P_{br}) + R(P_{br}) * \alpha_b$$
(1)

При условии: n(P_{mix})* σ(v,P_{mix}) << 1

 $R(P_{mix})$ – чувствительность ОАД; $n(P_{mix})$ – концентрация поглощающих молекул; $\sigma(v, P_{mix}) = \Sigma_i S_i \cdot F(v - v_{i0}, \gamma, \beta, ...)$ – сечение поглощения; S_i – интенсивность *i*-той линии поглощения; $F(v - v_{i0}, \gamma_i, \beta_i, ...)$ – контур *i*-той линии поглощения; $R(_{mix})\alpha_b$ – коэффициент фонового поглощения

$$\frac{U_{OAD}(\nu, P_{mix})}{W_0(\nu)} = \sum_{i}^{n} S_i^{meas}(P_{mix}) \cdot F(\nu - \nu_{i0}, \gamma_i, \beta_i, ...) + R(P_{mix}) * \alpha_b$$
(2)

Калибровка ОАД и определение сечений поглощения при разных давлениях

Из подгонки модельного спектра к экспериментальным ОА спектрам (2), зарегистрированным при различных давлениях определяются

 $S_{i meas}(P_{mix})$ и вклад фонового поглощения $R(_{mix}) \cdot \alpha_b$. Учитывая, что в (1) $\sigma(v, P_{mix}) = \Sigma_i S_i \cdot F(v - v_{i0}, \gamma_i, \beta_i, ...)$ (3) и $\Sigma_i S_i = const -$ известная величина (4)

Приравнивая правые части (1), (2) и интегрируя по частоте

$$R(P_{mix}) \cdot n(P_{mix}) \cdot \sum_{i}^{n} S_{i} = \sum_{i}^{n} S_{i}^{meas}(P_{mix})$$
$$R(P_{mix}) \cdot n(P_{mix}) = \sum_{i}^{n} S_{i}^{meas}(P_{mix}) / \sum_{i}^{n} S_{i}$$

сечения поглощения при разных давлениях можно записать

$$\sigma(\nu, P_{mix}) = \sum_{i}^{n} S_{i} \left/ \sum_{i}^{n} S_{i}^{meas} \left(P_{mix} \right) \cdot \left[\frac{U_{OAD}(\nu, P_{br})}{W_{0}(\nu)} - R(P_{mix}) \cdot \alpha_{b} \right]$$
(5)

ОА-Спектр метана в диапазоне 6010-6200 см⁻¹

Kapitanov V.A., Ponomarev Yu.N., Tyryshkin I.S. and Rostov A.P. // Spectrochimica Acta Part A. 2007. V. 66, N 4-5, P. 811-818.

БД HITRAN 2008 содержит - 300 линий ОА спектр метана – более чем 600

Определение формы и параметров контуров спектральных линий в значительной степени затруднено:

- Наличием большого количества слабых линий поглощения параметры которых определяются с большими ошибками (>40 линий)
- Сильным перекрыванием спектральных линий мультиплета даже при допплеровском уширении и T=296^oC
- Столкновительными уширением, сужением и интерференцией спектральных линий

Спектр СН₄ моделируется 11-ю линиями с интенсивностью S_i >6E-24

ОАД спектр + симуляция Никитин

Определение параметров контура перекрывающихся линий из подгонки каждого давления отдельно приводит к значительным систематическим ошибкам

Pine A. S. Line mixing sum rules for the analysis of multiplet spectra // JQSRT 1997. Vol. 57. № 2. pp. 145-155.

Модельный коэффициент поглощения (см⁻¹) для одного спектра выражается формулой:

$$K(\omega) = \frac{1}{\sqrt{\pi}} \sum_{m} \frac{\xi_m \operatorname{Re} P(x'_m, y_m, \zeta_m) + \eta_m \operatorname{Im} P(x'_m, y_m, \zeta_m)}{\sigma_m}$$

𝛛 - волновое число (см⁻¹);

Доплеровская полуширина линии с номером *m* на высоте *e*⁻¹ от максимума линии (см⁻¹):

$$\sigma_m = \omega_m^0 \sqrt{\frac{2k_B T}{Mc^2}}$$

 ω_m^0 - волновое число центра линии с номером *m* при нулевом давлении (см⁻¹);

- *k*_{*^{<i>R*}} постоянная Больцмана;</sub>
- *T* температура;
- С скорость света в вакууме;
- М-масса молекулы активного газа.

Одновременная подгонка экспериментальных спектров, зарегистрированных при T=296^oC и разных парциальных давлений смеси CH₄:N₂ Модельный спектр описывается 11-ю линиями с S_i>6E-24 cm/mol

CH4:N2(1:14).

ОАД спектр

 CH_4 - N_2 retrieved line profile parameters of the $2v_3$ band R9 multiplet, Rautian-Sobelman model.

v ₀ , cm ⁻¹ wavenumber	S, cm/mol, intensity × 10 ⁻²²	$\gamma_L N_2$, cm ⁻¹ /atm	δ , N_2 , cm^{-1}/atm	Dike narrowing parameter, β , × 10 ⁻
6105.3693(12)	0.0748(39)	0.0807(97)	-0.011(13)	-
6105.6260154(97)	7.1550(36)	0.052737(89)	-0.011201(91)	9.77(31)
6105.99734(36)	0.1198(30)	0.056 (Fixed)	-0.0105(Fixed)	-
6106.037465(28)	3.4704(0)	0.04682(39)	0.00289(46)	-
6106.049412(14)	7.9967(48)	0.06524(22)	-0.00987(28)	-
6106.19620(23)	0.5826(71)	0.0911(20)	-0.0241(24)	-
6106.220922(37)	2.8744(64)	0.05320(30)	-0.00591(34)	-
6106.251965(31)	2.9406(53)	0.05084(27)	-0.02642(31)	-
6106.283401(34)	4.935(14)	0.05796(26)	-0.01498(30)	-
6106.30165(52)	0.277(13)	0.0457(31)	-0.0467(44)	-
6107.16782(18)	0.42060(38)	0.0611(17)	-0.0104(18)	6(6)

Сравнение с литературными данными.

-2

-4

-6

6104.5

6105.0

1

6105.5

6106.0

Wavenumber, cm⁻¹

6106.5

6107.0

6107.5

Intensity Line centre Nikitin 2010 HITRAN 2008 Nikitin 2010 Margolis 1988 HITRAN 2008 $\overline{\gamma}$ Frankenberg 2008 Margolis 1988 v_{com}) *1E3, cm Frankenberg 2008 ۰ , - ''''') . 0 .

6106.5

•

6107.0

Wavenumber, cm⁻¹

6107.5

150

100

50

0

-50

-100

6104.5

 $\sum_{i=1}^{n} S_{i} = 3.087 * 10^{-21} cm / mol$

6105.0

6105.5

 $\sum S_{xmoll} = 1.5 * 10^{-23} cm / mol$

6106.0

(S our - S)) *100%

Одновременная подгонка экспериментальных спектров, зарегистрированных при T=296^oC и разных парциальных давлений смеси CH₄:Ne Модельный спектр описывается 11-ю линиями с S_i>6E-24 cm/mol

CH₄:Ne-(1:40).

Line mixing CH4:Ne

CH₄-Ne retrieved lines profiles parameters of the 2v₃ band R9 multiplet Line mixing model (*Pine A. S. JQSRT 1997. Vol. 57. № 2. pp. 145-155.*)

<i>v</i> ₀ , <i>cm</i> ⁻¹	S, cm/mol × 10 ⁻²²	γ_L , Ne, cm ⁻¹ /atm × 10 ⁻²	δ, Ne, cm ⁻¹ /atm × 10 ⁻²	$\beta,$ $cm^{-1}/atm \times 10^{-2}$	η, cm ⁻² /atm×10 ⁻³
6105.36875(27)	0.0750(13)	5.34(25)	-0.00(27)	-	
6105.6258930(27)	7.0457(12)	3.3746(25)	-0.1415(21)	1.0824(94)	
6105.99560(13)	0.1079(11)	3.5(Fixed)	-0.5 (Fixed)	-	
6106.039566(16)	4.438(10)	3.8459(85)	0.6985(97)	-	
6106.050820(10)	6.652(10)	4.1899(58)	-0.5090(69)	-	
6106.194805(51)	0.4934(17)	4.210(43)	-1.225(52)	-	
6106.2205803(86)	2.8876(17)	3.6599(99)	0.087(16)	-	1.702(95)
6106.2519971(75)	3.0585(16)	3.4237(85)	-0.930(15)	-	-1.702(Dept)
6106.2839776(49)	4.9943(19)	3.7921(64)	-0.5230(62)	-	
6106.300823(95)	0.2716(Fixed)	3.051(71)	-1.770(99)	-	
6107.168209(44)	0.4797(14)	4.004(44)	-0.492(38)	1.12(17)	

Сравнение параметров контура линий спектра поглощения метана в исследуемой области при разных столкновительных партнерах N₂ и Ne

Результаты

- Разработана, отлажена и протестирована на модельных и экспериментальных спектрах программа и методика одновременной подгонки нескольких экспериментальных спектров при разных парциальных давлениях смеси
- Зарегистрированы спектры мультиплета R9 2v₃ метана уширенного азотом и неоном и предложена методика калибровки OA спектрометра
- Определены параметры контуров модельного спектра, описывающего с погрешностью не более 1% экспериментальный ОА спектр мультиплета R9 метана в диапазоне давлений 0.9÷35 кПа при уширении азотом и неоном

Выводы

- Разработанная программа и методика одновременной подгонки нескольких экспериментальных спектров при разных парциальных давлениях смеси позволяет восстанавливать параметры модельного спектра, который воспроизводит экспериментальные спектры во всем диапазоне давлений (0.9-35 кПа) при уширении N₂ и Ne неопределенностью << 1%;
- Использование контура Раутиана-Собельмана обеспечивает значительное уменьшение погрешности (более чем в 2÷4 раза) при описании изолированных линий в сравнении с контуром Фойгта, в то время как, контур Фойгта, в некоторых случаях, приемлем для описания контуров сильно перекрывающихся линий поглощения;
- Для решения обратной задачи определения параметров и формы контуров сильно перекрывающихся линий необходимо привлечение дополнительной информации в виде глобального расчета спектра (положение центров линий, соотношение интенсивностей) или привлечения экспериментальных данных полученных, например, методами нелинейной внутридопплеровской спектроскопии;
- Проблема учета базовой линии (вклад слабых линий?)– основная причина различия данных ОА- и Фурье-спектроскопии

Работа выполнена при поддержке программы ОФН РАН, проект 3.9.4. (эксперимент) и ООО "Брукер" (разработка программного пакета), гранта РФФИ, проект 10-05-00764-а.

Благодарю за внимание