

Восстановление параметров контуров перекрывающихся линий мультиплета R5 полосы 2v₃ спектра поглощения CH₄ уширенного N₂

Многоспектральная обработка спектров с сильно перекрывающимися линиями

К.Ю.Осипов¹, А.Е.Протасевич¹, В.А.Капитанов¹, Я.Я. .Понуровский² ¹Институт оптики атмосферы им. В.Е.Зуева СО РАН, г. Томск. ²Институт общей физики им. А.М. Прохорова РАН, г. Москва.

Цель работы

- Тестирование и отладка программы одновременной подгонки модельного спектра к нескольким экспериментальным зарегистрированных при разных давлениях для определения параметров контуров спектральных линий. Разработка методик обработки экспериментальных спектров.
- Определение параметров модельного спектра сильно перекрывающихся линий поглощения мультиплета R5 метана уширенных азотом и неоном
- Исследование влияния вида модельного контура на точность описания экспериментальных спектров поглощения в диапазоне давлений уширяющих газов 0.005÷0.5 атм

Методика проведения эксперимента (отдел ДЛС ИОФАН, Понуровский Я.Я.)

Блок-схема двухканального ДЛС

Вакуумная система. HB1 форвакуумный насос, B1-B12 – вакуумные краны ,РД1-редуктор, B01,B02 – вакууметры, OM1манометр. Аналитический канал:

Кювета L=1 м. \oslash 30 мм с CaF₂ окнами, клин 10[°]. Смесь CH₄:N₂=1:113.36. CH₄ класс частоты 99,99% , P_{mixt} = 10÷350 torr, T = 295 K.

Реперный канал:

Кювета L=30 см. \varnothing 30 мм с CaF $_2$ окнами. Чистый CH $_4$ для стабилизации ДЛ

Датчики давления: «Элемер» (диапазон измерений 0-100 КПа, погрешность 0.2 %); «Сенсор» (диапазон измерений 0-100 мБмар, погрешность 0.1 %).

Датчик температуры NTS-Термистр, сопротивление 3 кОм, точность 0.5 %.

ДЛ: NTT Electronics, λ = 1.65 мкм, P=20 mBt, Δv =1,5-2 см⁻¹.

Фотоприемники: InGaAs Hamamatsu Ø=2 мм, D=3·10¹² см·Гц^{1/2}·Вт⁻¹ Предусилители : Коэфф. преобразования 12 В/мА, полоса пропускания 120 кГц

Параметры платы ввода/вывода NI DAQ 6052-Е: разрядность – 16 бит, частота дискретизации- 333 кГц, каналов ЦАП – 2, входных дифференциальных АЦП-8. Программа управления ДЛС и регистрации сигналов написана в среде графического программирования Labview 9.0 и драйверов фирмы National Instruments.

Процедура проведения эксперимента

- Для получения смеси метана с азотом предварительно осуществлялась пробоподготовка, при которой метан класса частоты 99,99% естественного изотопсостава смешивался в определенной пропорции с буферным газом (азот) и запускался в предварительно откаченный вакуумируемый баллон емкостью 5 литров. В течении суток происходил диффузионный процесс перемешивания при комнатной температуре Т 24 ^оС.
- При записи спектров поглощения СН₄ использовалась кювета длиной 100.0 см.
 Перед запуском смеси она обезгаживалась, откачивалась и прописывалась базовая линия I₀
- Коэффициент поглощения k(σ) на частоте σ определяется через закон Бугера-Ламберта- Бера k(σ)=Ln(l₀(σ)/l(σ))L, где l(σ)- интенсивность прошедшего через кювету излучения ДЛ, L- оптическая длина кюветы. В процессе записи серии спектров контролируется температура и давление.
- Для получения частотной шкалы спектров используется процедура линеаризации с использованием интерферометра Фабри-Перро.
- Подгонка контуров линий поглощения модельными функциями происходит в режиме "on-line с использованием программы, представленной на слайде 8,". Точность подгонки контролируется "residiul" по всей спектральной области генерации ДЛ. Результат наилучшей подгонки исследуемого спектра заносится в таблицу результатов.

Линеаризация частотной шкалы спектров поглощения

(а)-Зависимость перестроечной характеристики

ДЛ полученная из обработки спектров

пропускания эталона Фабри-Перо. D*=0.04925 (+-2*10⁻⁵) см⁻¹

(б)- разность между экспериментальной перестройкой и подгоночной функцией $v = v_0 + a^{*} ln(t) + bt^{*} + \Delta v$.

Нелинейность частотной шкалы 2*10-4 см-1.

Для определения минимального обнаружимого поглощения, использовалась процедура Allan variance. Она позволяет исследовать шумы опто-электронного тракта спектрометра во временной области и тем самым определить предел чувствительности спектрометра.

Минимально обнаружимое поглощение на длине 2 метра достигает величины 3*10⁻⁷ при времени усреднения 3 секунды

Характеристики ДЛ Спектрометра:

Относительная погрешность определения частоты-лучше 2 10⁻⁵ см⁻¹, Отношение сигнал/шум при накоплении и усреднении выборки состоящей из 64 спектров превышает величину 10⁵.

Регистрация спектра поглощения в исследуемой области. Характер поведения базовой линии.

Q-ветвь полосы 2v₃ метана и спектр мультиплета R5

Результаты индивидуальной подгонки спектров в LabView

Pine A. S. Line mixing sum rules for the analysis of multiplet spectra // JQSRT 1997. Vol. 57. № 2. pp. 145-155.

Сечение поглощения (см²/мол) для одного спектра выражается формулой:

$$K(\omega) = \frac{1}{\sqrt{\pi}} \sum_{m} \frac{S_m \left(\operatorname{Re} P(x'_m, y_m, z_m) + \zeta_m \operatorname{Im} P(x'_m, y_m, z_m) \right)}{\sigma_m}$$

ℳ - волновое число (см⁻¹);

Доплеровская полуширина линии с номером *m* на высоте *e*⁻¹ от максимума линии (см⁻¹):

$$\sigma_m = \omega_m^0 \sqrt{\frac{2k_B T}{Mc^2}}$$

 ω_m^0 - волновое число центра линии с номером *m* при нулевом давлении (см⁻¹);

- *k*_{*B*} постоянная Больцмана;
- *T* температура;
- С Скорость света;
- М- масса молекулы активного газа.

11

Функция, входящая в контур Раутиана – Собельмана для жёстких столкновений:

$$P(x'_{m}, y_{m}, z_{m}) = \frac{w(x'_{m}, y_{m} + z_{m})}{1 - \sqrt{\pi} z_{m} w(x'_{m}, y_{m} + z_{m})}$$

The complex probability function:

$$w(x, y) = \frac{i}{\pi} \int_{-\infty}^{+\infty} \frac{\exp(-t^2)}{x - t + iy} dt$$

J. Humliček, JQSRT, v. 27, p. 437, 1982;

$$\begin{split} x_m &= \frac{\omega - \omega_m^0}{\sigma_m}; \quad x'_m = x_m - s_m; \quad s_m = \frac{\delta_m}{\sigma_m}; \quad y_m = \frac{\gamma_m}{\sigma_m}; \quad z_m = \frac{\beta_m}{\sigma_m}\\ S_m &-$$
 интенсивность спектральной линии с номером *m* (см/мол); \\ \zeta_m &= \sum_{i=1}^N \zeta_m^{(i)} p^{(i)} - line mixing параметр для линии с номером *m*;
 $\gamma_m = \sum_{i=1}^N \gamma_m^{(i)} p^{(i)} -$ полуширина спектральной линии с номером *m* (см⁻¹);
 $\beta_m = \sum_{i=1}^N \beta_m^{(i)} p^{(i)} -$ velocity-changing collision rate для линии *m* (см⁻¹);
 $\delta_m = \sum_{i=1}^N \delta_m^{(i)} p^{(i)} -$ сдвиг спектральной линии с номером *m* (см⁻¹);
 $\eta_m = \sum_{i=1}^N \eta_m^{(i)} p^{(i)} = S_m \zeta_m = \sum_{i=1}^N S_m \zeta_m^{(i)} p^{(i)}$

 $p^{(i)}$ - парциальное давление i-го газа в смеси, содержащей N газов (атм);

 $\frac{13}{2}$ $\int_{m} \eta_{m} = 0$ - the sum rule (A.S. Pine // JQSRT 1997. Vol. 57. № 2. pp. 145-155.).

Общее количество параметров для одной линии равно 2 + 4·*N*.

В случае линейной зависимости line mixing parameters от давления связи принимают вид:

$$\sum_{m} \eta_m^{(i)} = 0, \forall i = \overline{1, N}$$

Общее количество параметров равно $(2 + 4 \cdot N) \cdot ($ количество линий) - N.

Если положить все $\eta_m^{(1)}, \eta_m^{(2)}, \dots, \eta_m^{(N)}$ равными нулю, то получится контур Раутиана – Собельмана для жёстких столкновений.

Если положить также и все $\beta_m^{(1)}, \beta_m^{(2)}, \dots, \beta_m^{(N)}$ равными нулю, то получится контур Фойгта.

Моделирование базовой линии при разных давлениях

Результат совместной обработки экспериментальных спектров (Rosenkranz profile)

Различия в совместной подгонке спектров при использовании следующих контуров:

• Voight (SSE=8.203E-40) Rautian (SSE=7.083E-40)

17

Сравнение с опубликованными данными

Результаты многоспектральной подгонки мультиплета R5 с использованием различных модельных контуров

#	Margolis	Gosat	Fit (Voigt profile)	Fit (Rautian- Sobelman profile)	Fit (Rosenkranz profile)
Line center position, v_0 , cm ⁻¹					
1	6067.0816	6067.08186	6067.0817706(73)	6067.0818708(77)	6067.0818703(72)
2	6067.0997	6067.09982	6067.0998809(73)	6067.0999762(77)	6067.0999781(72)
3	6067.1485	6067.14848	6067.147999(33)	6067.148114(36)	6067.148138(35)
4	6067.1570	6067.15554	6067.156913(22)	6067.157032(26)	6067.157028(26)
Line intensity, S, cm/mol × 10 ⁻²²					
1	8.803(12)	8.874	9.1506(53)	9.2296(58)	9.2089(57)
2	8.440(11)	9.020	9.2490(56)	9.1854(58)	9.1754(56)
3	6.316(10)	5.842	6.322(40)	6.468(45)	6.465(45)
4	7.844(10)	8.750	8.779(39)	8.644(45)	8.603(45)
Broadening coefficient, γ_L (N ₂), cm ⁻¹ /atm					
1	0.0597(2)	0.067	0.057334(81)	0.05676(11)	0.05702(27)
2	0.0630(4)	0.067	0.064283(97)	0.06748(14)	0.06254(30)
3	0.0518(6)	0.061	0.06006(23)	0.06149(26)	0.05713(40)
4	0.0597(3)	0.058	0.05581(15)	0.05414(14)	0.06119(33)
Shifting coefficient, δ (N ₂), cm ⁻¹ /atm					
1	-0.0075(1)	-0.0085	-0.007040(82)	-0.006133(84)	-0.00615(29)
2	-0.0056(1)	-0.0065	-0.003108(93)	-0.002897(99)	-0.01329(31)
3	-0.0148(1)	-0.0165	-0.00885(26)	-0.01890(26)	-0.00886(59)
4	-0.0158(2)	-0.0125	-0.02080(17)	-0.01543(18)	-0.01318(34)
Dike narrowing parameter, β (N ₂), cm ⁻¹ /atm					
1	-	—	-	0.00174(40)	0.00988(50)
2	-	-	_	0.02142(57)	0.01440(56)
3	—	—	-	0.0310(12)	0.0242(14)
4	_	_	_	0.01719(77)	0.0206(10)
Line mixing parameter, ζ (N ₂), 1/atm					
1	_		_	_	-0.524(Dep)
2	-	_	_	_	0.892(49)
3	-	—	-	-	-0.212(92)
4	—	-	-	_	-0.231(68)

J.S. Margolis. Measured line positions and strengths of methane from 5500 to 6180 cm⁻¹ // Appl.Opt. 1988. Vol. 27. № 19. pp. 4038–4051.

A.V. Nikitin, O.M. Lyulin, S.N. Mikhailenko, V.I. Perevalov, N.N. Filippov, I.M. Grigoriev, I. Morino, T. Yokota, R. Kumazawa, T. Watanabe. GOSAT-2009 methane spectral line list in the 5550–6236 cm-1 range // JQSRT 2010. Vol. 111. № 15. pp. 2211-2224..

Результаты

- Методом диодной лазерной спектроскопии зарегистрированы спектры мультиплета R5 2v3 метана уширенного азотом;
- Определены параметры контуров линий модельного спектра, описывающего с погрешностью не более 1.2% экспериментальный спектр мультиплета R5 метана в диапазоне давлений 6÷370 мм.рт.ст. при уширении азотом;
- Проведено сравнение полученных параметров линий с опубликованными литературными данными (HITRAN 2008, GOSAT 2009).

Выводы

- Одновременная подгонка с использованием большого количества спектров позволяет определять параметры контуров сильно перекрывающихся спектральных линий несмотря на сложный характер поведения базовой линии при низких давлениях;
- Преимущество подгонки с использованием контура Раутиана-Собельмана по сравнению с контуром Фойгта присуще только среднему диапазону давлений от 20 до 160 мм.рт.ст.;
- Использование спектров, зарегистрированных при высоких давлениях (выше 160 мм.рт.ст.) для получения линейной зависимости параметров контура линий, не позволяет учесть тонкие эффекты, такие как сужение Дике и интерференция линий.

Работа выполнена при поддержке программы ОФН РАН, проект 3.9.4. (эксперимент) и ООО "Брукер" (разработка программного пакета).

Авторы выражают благодарность Надеждинскому А.И. за внимание к работе и полезные обсуждения