Структура спектральных линий H₂¹⁶O, форма контура, самоуширение и их самосдвиг в диапазоне 1,392 mµ

Многоспектральная обработка спектров с сильно перекрывающимися линиями.

В.А.Капитанов, А.Е.Протасевич, К.Ю.Осипов, Ю.Н.Пономарев

Цель работы

- Определение параметров сильно перекрывающихся линий поглощения H₂¹⁶O
- Исследование влияния структуры линий и формы контура на точность описания спектров поглощения H₂¹⁶O в диапазоне давлений 0.002÷0.0236 атм

B.A. Voronin, I.M. Nasrtdinov, A.B. Serebrennikov, T.Yu. Chesnokova, Atmospheric Oceanic Opt. 16 (3) (2003) 272–276.

T. Yu. Chesnokova, B.A. Voronin, A.D. Bykov, T.B. Zhuravleva, A.V. Kozodoev, A.A. Lugovskoy, J. Tennyson, JMS, 256 (2009) 41–44

Экспериментальные спектры H₂O.

Диодный лазерный спектрометр.

Институт общей физики им. А.М. Прохорова РАН, г.Москва,

"Для решения обратной задачи определения параметров и формы контуров сильно перекрывающихся линий необходимо привлечение дополнительной информации в виде глобального расчета спектра (положение центров линий, соотношение интенсивностей) или привлечения экспериментальных данных полученных методами нелинейной внутридопплеровской спектроскопии"

HITRAN DATABASE

Total intensity = 8.729838E-22 (HITRAN)

v, cm ⁻¹	S, cm/mol	γ _{air} , cm⁻¹/atm	Γ _{self} , cm ⁻¹ /atm	$v_1v_2v_3$	$v_1v_2v_3$	JKaKs	JKaKs
7184.983980	6.455e-25	0.3323	0.3330	120	000	651	542
7185.242220	1.380e-25	0.0919	0.4650	002	000	414	423
7185.394270	5.164e-23	0.4341	0.4350	200	000	523	616
7185.400770	1.049e-23	0.3003	0.3010	101	000	954	955
7185.442550	3.873e-24	0.4191	0.4200	101	000	808	725
7185.577000	1.130e-23	0.4281	0.4290	200	000	616	523
7185.597310	7.947e-22	0.1946	0.1950	101	000	660	661

Используя многоспектральную обработку и информацию представленную в базе данных HITRAN, нам не удалось определить параметры и форму контуров сильно перекрывающихся линий, описывающих всю совокупность экспериментальных спектров.

Определение параметров контура перекрывающихся линий из обработки каждого давления отдельно

Wavenumber,	Intensity*1e22,	Lorentz width,
cm⁻¹	cm/mol	cm⁻¹
7184.976652	0.003824	0.0032
<mark>7185.239846</mark>	<mark>6.936E-4</mark>	<mark>0.002</mark>
7185.393639	0.41454	0.003988
7185.39281	0.053402	0.003276
7185.441352	0.028879	0.00454
7185.596602	5.945531	0.001761

Total	intensity	S= 6	.445352e-22
-------	-----------	------	-------------

Wavenumber,	Intensity*1e2	Lorentz width,	Dicke
cm ⁻¹	2, cm/mol	cm ⁻¹	narrowing, cm ⁻¹
7184.976682	0.004929	0.00338	0
<mark>7185.239519</mark>	<mark>6.3E-4</mark>	<mark>9.417E-5</mark>	<mark>0</mark>
7185.392921	0.374427	0.003859	4.32E-4
7185.396193	0.09715	0.004497	0
7185.441684	0.027395	0.003529	0
7185.596602	5.976606	0.001902	3.072E-4

Total intensity S= 6.480507e-22

 $\Delta S = 0.6\%$

Определение параметров контура перекрывающихся линий из обработки каждого давления отдельно

Wavenumber,	Intensity*1e22,	Lorentz width,
cm ⁻¹	cm/mol	cm ⁻¹
7184.97685	0.0039	0.00114
<mark>7185.23951</mark>	<mark>0.0006</mark>	<mark>9.410E-5</mark>
7185.39337	0.4146	0.00339
7185.39615	0.0585	0.01038
7185.44189	0.0258	0.00318
7185.57067	0.0370	0.00399
7185.59662	5.9137	0.001169

Wavenumber,	Intensity*1e22	Lorentz	Dicke
cm⁻¹	, cm/mol	width, cm ⁻¹	narrowing, cm ⁻¹
7184.97667	0.00493	0.0033543	0.000000
<mark>7185.23951</mark>	<mark>0.00045</mark>	<mark>9.4109E-5</mark>	<mark>0.000000</mark>
7185.39292	0.41500	0.0039456	0.000489
7185.39827	0.05546	0.0035461	0.000000
7185.44158	0.02810	0.0037295	0.000000
7185.57689	0.02733	0.0068325	0.000500
7185.59662	5.94732	0.0018321	0.000273

Total intensity S= 6.4277e-22

Total intensity S= 6.447814e-22

 $\Delta S = 0.3\%$

- O. Leshchishina, S. Mikhailenko, D. Mondelain, S. Kassi, A. Campargue, CRDS of water vapor at 0.1 Torr between 6886 and 7406 cm⁻¹ // JQSRT, 113, 2155-2166 (2012)
- O.Naumehko, A.Fazliev IUPAC critical evaluation of the rotational-vibrational spectra of water vapor,Part III: Energy levels and transition wavenumbers for H₂¹⁶ O// JQSRT (in print, private information)

Total intensity = 8.709191E-22 (O. Leshchishina, S. Mikhailenko...JQSRT 2012)

Определение параметров контура перекрывающихся линий из обработки каждого давления отдельно

	bm	JQS	RT 201	2 7 line	s RS	MSE=1.	7E-24
1E-20 -	n, cm²/			\bigwedge			
1E-21 -	sssectic		\bigwedge				
1E-22 -	C						_
1E-23 -							
] 1E-24 –	7185.0	7185.2	7185.4	7185.6	7185.8	7186.0	-

Wavenumber,	Intensity*1e22,	Lorentz width,
cm⁻¹	cm/mol	cm ⁻¹
7184.97619	0.0082	0.00995
<mark>7185.24179</mark>	<mark>0.0009</mark>	<mark>0.00221</mark>
7185.39340	0.4150	0.00340
7185.39562	0.0618	0.01112
7185.44185	0.0246	0.00238
7185.59607	1.4816	0.00602
7185.59670	4.4500	0.00076

Wavenumber,	Intensity*1e22,	Lorentz width,	Dicke narrowing,
cm⁻¹	cm/mol	cm ⁻¹	cm ⁻¹
7184.976587	0.0054	0.004540	0.000000
<mark>7185.239519</mark>	<mark>0.0004</mark>	<mark>9.410E-5</mark>	
7185.392944	0.4160	0.003956	0.000492
7185.398224	0.0550	0.003649	
7185.441593	0.0275	0.003460	
7185.595394	1.4471	0.003711	0.000804
7185.596903	4.5299	0.001372	0.000184

Total intensity S= 6.4412e-22

Total intensity S= 6.480825e-22

 $\Delta S = 0.6\%$

Влияние формы контура на точность описания спектров поглощения H₂¹⁶О в диапазоне давлений 0.002÷0.0236 атм при обработке отдельных давлений

- Различия в суммарных интенсивностях и интенсивностях наиболее сильных линий при описании контурами Фойгта и Раутиана-Собельмана составляют ~ 0.3 ÷ 0.6%.
- Форма контура наиболее сильных линий оказывает значительное влияние на спектроскопические параметры близкорасположенных слабых линий - смещения центров линий при описании контурами Фойгта и Раутиана-Собельмана достигает 0.001~0.006 см⁻¹, а коэффициентов уширения 2 и более раз.
- Основными факторами, определившими неудачную попытку использования многоспектральной обработки для определения параметров спектральных линий являются погрешности измерения давления водяного пара.

Корректировка давления H₂O из условия постоянства суммарной интенсивности (обработка каждого спектра отдельно, Раутиан-Собельман, 6 спектральных линий H₂O + 1 HDO)

Pressure	Total	Pressure			
Torr	Intensity	Torr			
1.670728	6.612963	1.716597			
2.344178	6.585673	2.398596			
3.18487	6.635076	3.283251			
4.181758	6.489576	4.216398			
5.348539	6.482655	5.387094			
7.01436	6.469313	7.050382			
8.18699	6.480825	8.243677			
9.521447	6.458882	9.554913			
10.862529	6.398917	10.799504			
12.36831	6.401352	12.301228			
14.047637	6.42217	14.016884			
16.327705	6.375041	16.172403			
18.872874	6.383842	18.71917			

$$\Delta S_{total} = 4\%$$

Многоспектральная обработка спектров H₂O, зарегистрированных при T=296.15 К в диапазоне давлений (4-18 торр.). Сравнение моделей Voigt и Rautian-Sobelman.

Модель из 5 линий, Rautian-Sobelman profile. (Описание суммы линий в районе 7185.596 одной линией)

Total intensity Voigt = 6.43157e-22 Total intensity RS = 6.45516e-22 **\DeltaS = 0.37\%**

Модель из 6 линий, Voigt profile. (Описание суммы линий в районе 7185.5966 двумя линиями)

Модель из 6 линий, Rautian-Sobelman profile. (Описание суммы линий в районе 7185.596 двумя линиями)

Total intensity Voigt = 6.48611e-22 Total intensity RS = 6.4760e-22

Total intensity of 7 H_2O lines:

HITRAN8.729838E-22, cm/molJQSRT 20128.709191E-22, cm/molИОΦ+ИОА6.485217E-22+ 6.0 (1.8)E-26(HDO), cm/mol

$$k(v) = -\frac{1}{L} ln\left(\frac{I}{I_0}\right) = S_{HDO} \cdot F(v_{HDO}) \cdot C_{HDO} + \sum_{i=0}^{7} S_i \cdot F_i(v_i) \cdot C_{H_2O}$$

 $S_{HDO} = 1.573E-25$, cm/mol; $\sum_{i=0}^{7} S_i = 8.709191E-22$, cm/mol

C_{HDO} +C_{H2O} = 2.693e17 moll/cm³ (8.18Torr);

?

 $C_{H2O}/(C_{HDO} + C_{H2O}) = 74.4\%$

Модель из 7 линий H₂0 +1 линия HDO, Rautian-Sobelman profile. (Давления 8.18 – 18.87 Torr)

XY Graph 2	d:\Wor	k2_Proce	ssing\\	WorkSpa	ace\Mos	cowH2C)(Oct_20	12)\H20	D-H2O_(29.02.1	2)\Corre	ctPressu	ure\7.Pin	e(Pressu	ires_off)									
3E-21 -																								
2.8E-21																								
2.0E-21 -																								
2.2E-21 -																								- 1
2E-21 -																								
1.8E-21 -										<u> </u>		<u> </u>							<u></u>				<u> </u>	
1.6E-21 -																								
퓔 1.4E-21 -																								
a 4 1.2E-21-										<u> </u>				<u> </u>										
1E-21 -																		<u></u>						
8E-22 -																								- 1
6E-22-														~~										
4E-22-																								- 1
2E-22-																								
25.22-										-														
-2E-22 -																								
7184	.95 71	85 7185.0	5 718	5.1 718	5.15 718	5.2 718	5.25 718	5.3 718	5.35 71	85.4 718	85.45 71	85.5 71 Wavenu	85.55 71 mber, cm-1	85.6 718	5.65 71	85.7 71	35.75 718	5.8 718	5.85 718	5.9 718	5.95 718	36 718	6.05 7186	5.1 7186.15
+ 💌 🕪	1																					Wave	number,	<u>قە: « كىر</u>
7184.97	6979	0.002149)	4.8600	53E-25	3.1529	45E-26	0		0		0.256	889	0.0582	274	-0.002	2563	0.1310	13	0		Amp	itude	& 1 ¹
7185.24	05	0		6.05317	76E-26	1.8106	2E-26	0		0		0.3		0		-0.032	2515	0.2887	58	0		0		1
7185.39	2146	0.000355	5	3.6577	E-23	3.5037	55E-24	0		0		0.370	671	0.0059	981	0.004	087	0.0094	56	0.0780	064	0.010	709	1
7185.39	8814	0.001129)	1.04222	21E-23	3.5059	2E-24	0	0 0			0.252	778	0.0237	701	-0.07	5432	0.0268	66	0		0		1
7185.44	1604	0.000411		2.8970	66E-24	4.2771	76E-26	0		0		0.357	839	0.0129	913	-0.018	3838	0.0259	24	0		0		1
7185.57	5565	0.000573	;	2.6971	67E-24	1.1625	43E-25	0		0		0.119	646	0.0165	563	0.050	25	0.0276	49	0		0		1
7185.59	6152	1.157654	E-5	1.48607	73E-22	1.3134	28E-25	0		0		0.319	406	0.0015	563	0.050	189	0.0016	8	0.0124	421	0.002	581	1
7185.59	66	0		4.46842	2E-22	0		0		0		0.120	986	0.0003	345	0.002	981	0.0002	9	0.0209	937	0.000	398]

Total intensity RS = 6.4852e-22

Сравнение положений линий и интенсивностей GPI+IAO с данными JQSRT 2012

Wavenumber, cm ⁻¹	Wavenumber, cm ⁻¹	Intensity, cm/mol	Intensity, cm/mol
JQSRT 2012	GPI+IAO	JQSRT 2012	GPI+IAO
7184.9844	7184.9770(21)	6.301E-25	6.5(4)E-25
<mark>7185.2422</mark>	<mark>7185.240(2)</mark>	<mark>1.573E-25</mark>	<mark>2.3(7)E-25</mark>
7185.3944	7185.3921(3)	5.391E-23	4.9(4)E-23
7185.4005	7185.3988(11)	9.671E-24	1.4(5)E-23
7185.443	7185.4416(4)	3.822E-24	3.89(6)E-24
<mark>7185.5167</mark>		<mark>4.176E-28</mark>	
7185.5771	7185.5756(5)	2.257E-24	3.62(15)E-24
7185.5961	7185.59615(1)	2.002E-22	1.995(3)E-22
7185.5966	7185.5966(1)	6.002E-22	6E-22
7185.6966		6.273E-26	
7185.7328		8.505E-28	
7185.847		4.56E-27	

Сравнение положений линий, интенсивностей и коэффициентов самоуширения GPI+IAO с данными HITRAN

Wavenumber, cm ⁻¹	Wavenumber, cm ⁻¹ GPI+IAO	Intensity, cm/mol, HITRAN	Intensity, cm/mol GPI+IAO	γ∟, cm ⁻¹ /atm HITRAN	γι, cm ⁻¹ /atm GPI+IAO			
7184.98398	7184.9770(21)	6.455E-25	6.5(4)E-25	0.333	0.257(58)	120	651	542
<mark>7185.24222</mark>	<mark>7185.240(2)</mark>	1.38E-25	<mark>2.3(7)E-25</mark>	<mark>0.465</mark>	<mark>0.3</mark>	<mark>002</mark>	<mark>414</mark>	<mark>423</mark>
7185.39427	7185.3921(3)	5.164E-23	4.9(4)E-23	0.435	0.371(6)	200	523	616
7185.40077	7185.3988(11)	1.049E-23	1.4(5)E-23	0.301	0.252(23)	101	954	955
7185.44255	7185.4416(4)	3.873E-24	3.89(6)E-24	0.42	0.358(13)	101	808	725
7185.577	7185.5756(5)	1.13E-23	3.62(15)E-24	0.429	0.120(16)	200	616	523
	7185.59615(1)		1.995(3)E-22		0.319(2)		661	660
7185.59731	7185.5966(1)	7.947E-22	6E-22	0.195	0.1209(4)	101	660	661

Влияние структуры спектра, формы контура на точность описания спектров поглощения H₂¹⁶O в диапазоне давлений 0.002÷0.0236 атм при многоспектральной обработке

- Различия в суммарных интенсивностях и интенсивностях наиболее сильных линий при описании спектра различным числом линий и моделями контурами Фойгта и Раутиана-Собельмана составляют ~ 0.3 ÷ 0.83%.
- Форма контура наиболее сильных линий оказывает значительное влияние на спектроскопические параметры близкорасположенных слабых линий - смещения центров линий при описании контурами Фойгта и Раутиана-Собельмана достигает 0.001~0.006 см⁻¹, а коэффициентов уширения 2 и более раз.
- Описание суммы сильно перекрывающихся линий в районе 7185.5966 см⁻¹ одной линией, (Фойгт или Раутиан-Собельман), приводит к несимметричным невязкам (residual).

Результаты

- С отношением сигнал/шум ~ (4÷8)·10³ диодным лазерным спектрометром зарегистрированы спектры поглощения H₂O
- С использованием многоспектральной обработки определены параметры контуров модельного спектра, описывающего с погрешностью менее 0.2% экспериментальный спектр водяного пара в диапазоне 8 – 18 Тор
- Впервые экспериментально разрешены переходы на квазивырожденные уровни Q6 (101) ?

Работа выполнена при поддержке программы ОФН РАН, проект 3.9.4. (эксперимент) и ООО "Брукер" (разработка программного пакета), гранта РФФИ, проект 10-05-00764-а.

Авторы выражают благодарность С.Н. Михайленко и О.В. Науменко за представление расчетных данных и полезные консультации

Благодарю за внимание

Результаты подгонки спектра H₂O (P_{H2O} = 12 Torr), различными контурами

