Уширение и сдвиг линий H₂¹⁶O в спектральном диапазоне 1.392µm

Переславцева А.А. Понуровский Я.Я.

Применение ДЛС

- Прецизионные измерения спектральных линий поглощения
- Анализ парниковых газов для задач экологии
- Диагностика болезней
- Дистанционное обнаружение продуктов распада взрывчатых веществ
- Контроль технологических процессов

Предпосылки проведения данного исследования

1. Для аналитических применений и газоанализа методами ДЛС необходимы точные знания параметров спектральных линий: центров аналитических линий, их сечений поглощения, коэффициентов уширения в атмосфере, а также в различных буферных газах.

2. При прецизионных измерениях контура спектральной линии необходимы знания спектральных особенностей излучения самого источника - диодного лазера.

Блок-схема двухканального ДЛС

Типичный пример работы двухканального ДЛС

1 – сигнал с аналитической кюветы, 2 – сигнал с реперной кюветы, 3 – сигнал ИФП

Характеристики ДЛС

Спектральное разрешение ДЛС составляет 2*10⁻⁵см⁻¹. Отношение сигнал/шум при накоплении и усреднении выборки, состоящей из 20 спектров, более 10⁴ при характерном времени усреднения этой выборки t=5 с.

При времени накопления 5 сек минимальная величина поглощения достигает значения 4*10⁻⁶, при этом нестабильность температуры равна 2*10⁻⁵ ⁰С

Исследование области свободной дисперсии ИФП и кольцевого резонатора.

Область свободной дисперсии интерферометра определяет расстояние между максимумами соседних порядков интерференционной картины в монохроматическом свете.

$$\Delta \lambda = \frac{\lambda^2}{2Ln}$$
 $D^* = \frac{\Delta \lambda}{\lambda^2} = \frac{1}{2Ln}$

Интерферометр Фабри-Перо (слева), Кольцевой волоконный резонатор (справа).

Интерфейс программы "Panorama.vi"

Результаты исследований

дисперсии ФП от длины волны ДЛ

Зависимость dv/dT от длины волны ДЛ

Для исследования области свободной дисперсии кольцевого резонатора использовался ДЛ с длиной волны излучения λ=1,51мкм. В данном случае осуществлялся импульсный режим генерации лазера. Параметры импульса: длительность импульса τ=10мс, частота повторения v=150кГц, ток I=60мА, температура T=23°C. Для кольцевого резонатора D* составило 0,00643(2) см⁻¹.

Аппаратная функция ДЛ

Экспериментальный спектр поглощения любой молекулы искажен влиянием аппаратной функции спектрометра. В случае диодных лазеров, это влияние напрямую связано с конечной шириной линии генерации ДЛ.

$$W(x,y) = \frac{i}{\pi} \int_{-\infty}^{+\infty} \frac{\exp(-t^2)dt}{x-t+iy},$$

$$y = \sqrt{\ln 2} \cdot \frac{\gamma_a}{\gamma_d}, \quad x = \sqrt{\ln 2} \cdot \frac{\sigma - \sigma_0}{\gamma_d} \quad \gamma_d = 3.5812 \cdot 10^{-7} \cdot \sqrt{\frac{T}{M}} \cdot \sigma_0$$

γ_a =0.00016 (1) см⁻¹, что соответствует ширине линии генерации ДЛ − 5.3 МГц;

(а) - Экспериментальный спектр поглощения для определения ширины линии генерации ДЛ, (б) – разность между экспериментальным спектром и моделью.

Измерение интенсивностей линий паров воды в диапазоне 7184-7186 см⁻¹

воды при разных давлениях

Уширение и сдвиг линий мультиплета воды H₂¹⁶O в диапазоне 7184-7186 см⁻¹

Для исследования процессов уширения и сдвига линий в мультиплете использовались

буферные газы: N₂, Ar, He, Xe, воздух.

Зависимость коэффициента поглощения от давления при уширении ксеноном.

а – экспериментальный спектр поглощения H₂¹⁶О при уширении Хе и модельный контур; б - разность между моделью и экспериментом.
Р=39 мбар

Экспериментальные зависимости (а) сдвига линии, (б) столкновительного уширения и (в) сужения Дикке от давления газовой смеси в различных буферных газах.

Уширение и сдвиг линий мультиплета полосы v₁+v₃ (660←661) воды H₂¹⁶О в диапазоне 7184-7186 см⁻¹

Коэффициенты сдвига, уширения и сужения линий мультиплета, полосы v₁+v₃ воды

H₂¹⁶O B N₂, Ar, He, Xe, BO3ДУXe. (Diode-Laser Spectroscopy: Line Profiles of H2O in the Region of 1.39 μm

Journal of Molecular Spectroscopy, Volume 208, Issue 1, July 2001, Pages 25-31

Muriel Lepère, Annie Henry, Alain Valentin, Claude Camy-Peyret)

Buffer gas	d,	g,	g (Lepere Et Al.),	Ζ,	z (Lepere Et Al.),	n,
	cm-1*atm-1	cm-1*atm-1	cm-1*atm-1	cm-1*atm-1	cm-1*atm-1	%
self	0.012(4)	2.02(2)*10 ⁻¹	2.30(2)*10 ⁻¹	4.2(2)*10 ⁻²	-	100
Не	4.81(9)*10 ⁻³	1.76(2)*10 ⁻²	1.42(9)*10 ⁻²	8.7(4)*10 ⁻³	6(2)*10 ⁻³	1.26
N ₂	-1.24(1)*10 ⁻²	5.0(2)*10 ⁻²	4.69(5)*10 ⁻²	2.5(2)*10 ⁻²	2.4(2)*10 ⁻²	1.49
air	-1.362(8)*10 ⁻²	4.37(4)*10 ⁻²	-	2.14(4)*10 ⁻²	-	0.5
Ar	-2.18(1)*10 ⁻²	2.20(2)*10 ⁻²	1.92(4)*10 ⁻²	3.4(4)*10 ⁻²	3.0(2)*10 ⁻²	1.24
Xe	-5.28(4)*10 ⁻²	4.5(1)*10 ⁻²	-	3.2(3)*10 ⁻²	-	1.47

Выводы:

- Собран двухканальный ДЛС для исследования спектров поглощения H₂O, CO₂, C₂H₂, C₂H₄, CH₄, NH₃ в ближнем ИК диапазоне
- Разработаны программы управления ДЛС и процедуры регистрации и обработки спектров (линеаризация, нахождение центров и интенсивностей линий)
- Найдена зависимость области свободной дисперсии ИФП от длины волны, а также получена зависимость величины dv/dT от длины волны для исследованных ДЛ
- Учтено влияние аппаратной функции ДЛ, приводящее к искажению контура спектральной линии. Определена ширина линии генерации ДЛ из подгонки доплеровски уширенных линий H₂O в диапазоне 7184-7186 см⁻¹
- Измерены интенсивности линий H₂O в диапазоне 7184-7186 см⁻¹. Проведено сравнение с результатами других исследований и данными из "HITRAN-2008".
- Получены коэффициенты уширения, сдвига и сужения линий H₂O в диапазоне 7184-7186 см⁻¹ в присутствии буферов N₂, Ar, He, Xe, воздух. Зарегистрирован эффект асимметрии контура линии при уширении аргоном, ксеноном.