РОССИЙСКАЯ АКАДЕМИЯ НАУК

Рекордные характеристики квантовых каскадных лазеров

И. И. Засавицкий

2. Тем-рная зависимость порогового тока

3. Проблема расширения спектрального диапазона. Перестройка.

- 4. Рекордные мощности излучения
- 5. О КПД от розетки (≥ 50 %)
- 6. Некоторые применения ККЛ
- 6. Выводы и перспективы

18-ый Общероссийский семинар по ДЛС, 31 октября 2012 года, Москва 1

Квантоворазмерный и туннельный эффекты

$$U_0 = \Delta E_c = (0,3 \div 1,5) \Im B$$

 $\mathbf{D} \sim \exp[-0.325 \mathbf{L}_{B} \sqrt{\mathbf{m}^{*}(\mathbf{U}_{0} - \mathbf{E})}]$ $\mathbf{D} \sim 1$ При когерентном резонансном туннелировании

Сравнение квантоворазмерных междузонных и межподзонных переходов

Квантовый каскадный лазер:

- униполярный прибор
- $-h\nu = f(L_z)$
- Оже-рекомбинация подавлена
- узкая ширина линии усиления
 (б-образный профиль)

Простейшая схема вертикальных переходов

Механизм образования инверсии населенностей в квантовой яме при межподзонном рассеянии с испусканием продольного оптического фонона

$$E = E_n + \frac{\hbar^2 k_{11}^2}{2m^*}$$

Т.к. $(E_3 - E_2) > (E_2 - E_1),$ то $q_{32} > q_{21}.$ Поскольку $\tau \sim q^2$, то $\tau_{32} > \tau_{21}$

$$\tau_{if} \sim q_{if}^2$$

$$V(r) = \int E dr \sim \int e^{i(qr - \omega t)} dr \sim q^{-1}$$

$$\frac{1}{\tau_{if}} = \frac{2\pi}{\hbar} \left| \left\langle \psi_i \middle| V(r) \middle| \psi_f \right\rangle \right|^2 \delta(E_f - E_i + \hbar \omega_{LO})$$

Схема ККЛ с вертикальными переходами и инжектор [Capasso et al., APL, 67, 3057 (2001)]

E = 70 кВ/см

Ширины ям и барьеров (жирные) слева направо: **6,8**/4,8/**2,8**/3,9/**2,7** нм

Вертикальные излучательные переходы происходят внутри одной квантовой ямы. Ширина линии мала (~10 мэВ). Инжектор- это слегка апериодическая и частично легированная СР. Его функции: 1. служит резервуаром для электронов и их охлаждения; 2. исключает образование доменов в электрическом поле; 3. формирует минищель (минигэп), которая блокирует переходы с верхнего лазерного уровня; 4. Разность между нижним лазерным уровнем и основным уровнем инжектора есть мера обратного заброса электронов

Схема работы ККЛ. Инжекция и релаксация электронов в активной области ККЛ (4-уровневая схема). Роль LO-фонона.

Ранняя эволюция рабочих схем ККЛ (от 2 до 5 ям)

Оптимизация рабочей схемы

Она, как правило, заключается в следующем:

1. Эффективная туннельная инжекция на верхний лазерный уровень (иногда селективная)

2. Уменьшение тока утечки на верхние состояния и в континуум

3. Эффективная экстракция электронов с нижнего лазерного уровня

4. Уменьшение обратного заброса носителей заряда, который растет с увеличением температуры (снижение вольтового дефекта).

Процесс оптимизации зависит от конкретной задачи и схемы, требует компромиссного подхода. При симуляции варьируются параметры гетероструктуры (ширины ям и барьеров, высота барьеров, значение электрического поля и др.)

Схематическая классификация оптических и безызлучательных переходов в различных ККЛ

Оптические переходы между верхними и нижними лазерными состояниями:

Внутризонные схемы:

- 1. Синглет-синглетные вертикальные в реальном пространстве
- 2. Синглет-синглетные диагональные в реальном пространстве
- 3. Синглет квазиконтинуум
- 4. Дублет синглет
- 5. Дублет-континуум
- 6. Межминизонные в сверхрешетках

Междузонные схемы: как правило, используют синглет-синглетные диагональные в реальном пространстве переходы (ГП второго типа). **Безызлучательные переходы с участием продольного LO-фонона**:

- 1. Однофононные резонансные переходы (как правило, антикроссинг)
- 2. Однофононные переходы «синглет континуум»
- 3. Последовательные резонансные переходы с участием 2 фононов
- 4. Последовательные резонансные переходы с участием 3 фононов
- 5. Однофононные резонансные переходы + переход «синглет»-континуум

Конструкция полоскового ККЛ (внешние размеры, волновод, квантовые ямы и инжектор)

N = 3,1/3,2/3,5/3,35 для InP/AlInAs/GaInAs/AO 11

Спектр излучения

Спектры излучения в импульсном многомодовом и непрерывном одномодовом режимах при 300 К

Температурная зависимость порогового тока

Температурная зависимость пороговой плотности тока

Характеристическая температура T₀ для InGaAs/InAlAs

$J_{th}(T) = J_0 \exp(T/T_0)$

Рабочая схема	5	λ, мкм	<i>J_{th}</i> (300К) кА/см ²	<i>Т₀</i> , К	Интер вал, К
Мелкая яма и слои AlAs в	3	5	1,43	383	298-
инжекторе для снижения утечек Razeghi et al., APL, 97 , 251104 (2010)					373
Дублетный верхний лазерный уровень ⇒ внизу континуум HamamPhotonics, OE, 19 , 2694 (2011)		8,7	2,6	510	300- 400
Диагональный переход с верхним промежут. состоянием+ 1 фонон HamamPhotonics, APL, 97 , 201109 (2010)		15	3,5	450	320- 380
Диагональный переход + 2 LO-фонона ⇒ континуум Gmachl et al., Princeton, OE, 19 , 8297 (2011)		14	2,0	306	240- 390
	$\Delta E = f(T) \checkmark$				16

Большая Т₀ для длинноволнового лазера [Gmachl et al., OE, **19**, 8297 (2011)]

Рабочая схема: 6 КЯ; оптический диагон. переход + 2 LO-фонона ⇒ континуум

 $\lambda = 14$ мкм; 70 каскадов; L =2,8 мм; при 300 К: J_{th} = 2 кA/см², P = 336 мВт, 375 мВт/А; T₀ = 190 -310 К

ККЛ с переходами «дублет ⇒ континуум»

[Hamamatsu Photonics, Yamanishi et al.,, APL, 97, 201109(2010); OE, 19, 2694 (2011)]

Согласованная пара InGaAs/InAlAs; MOVPE; 40 периодов

Сначала: **DAU/SS** (переход «дублет \Rightarrow синглет»), 4 КЯ, $\lambda \sim 8,4$ мкм; 330 см⁻¹; T₀ ~ 306 К $\Delta E_{43} \sim 20$ мэВ; $\Delta E_{54} \sim 60$ мэВ Переход «дублет \Rightarrow континуум», 5 КЯ; 40 каскадов $\lambda \sim 8,7$ мкм; $\Delta\lambda/\lambda_0 \sim 0,4$; 500 см⁻¹; $J_{th} = 2,6$ кА/см²; Ширина ЭЛ слабо зависит от Т и V при T > 300 К; $T_0 \sim 510$ К; $P_{\rm имп}(300$ К) ~ 1 Вт; $P_{\rm CW}(30\ ^0{\rm C}) \sim 0,1$ Вт на AlN; Slope $\sim 0,5$ Вт/А

Рекордные мощности излучения

Вольтамперная и ваттамперная характеристики мощных ККЛ в импульсном и непрерывном режиме

Схема ККЛ с нерезонансной экстракцией электронов на основе напряженной ГС $In_{0.73}Ga_{0.27}As/Al_{0.71}In_{0.29}As$ ($\lambda = 4$ мкм) [Patel et al., PNAS, **107**, 18799 (2010); SPIE, **7953**1L(2011)]

Проблема при $\lambda < 4,5$ мкм: утечка в непрямые X- и L-долины и термоионная эмиссия в континуум. Non-resonant extraction (NRE) дает больше свободы и позволяет увеличить расстояние E_{54} . $E_{54}=60$ мэB; $E_{C4}=280$ мэB MBE, BH, HR, AR, AlN, air-cooled, P = 2 BT с одного торца

ВАХ, ВТАХ и КПД для ККЛ, работающего в непрерывном режиме при 300 К с $\lambda = 4,6$ мкм [Patel et al., SPIE, 73250L (2009)]

22

Мощные длинноволновые ККЛ на напряженных гетероструктурах с эффективностью инжекции 70 % [Patel et al., OE, 20, 24272 (2012)]

Рекордная мощность излучения в непрерывном режиме при 300 К [Razeghi et al., APL, 97, 251104 (2010); 98, 181102 (2011)]

Согласованная мелкая яма (1,3 нм) снижает также шероховатость интерфейса, т.е. ширину линии. Легирование до 2х10¹⁶ см⁻³. (AlAs, зазор 3-4, вольтовый дефект, шероховатость, диагональный)

Shallow-well design

Мелкая асимметричная яма (пара Ga_{0.47}In_{0.53}As/Al_{0.48}In_{0.52}As), далее пара Ga_{0.31}In_{0.69}As/Al_{0.64}In_{0.36}As и слой AlAs в инжекторе для уменьшения утечек в континуум $\Delta E_{43} \sim 100$ мэВ (вместо 80 мэВ) $\Delta E_{54} = 70$ мэВ (вместо 83 мэВ) $\Delta E_{g2} = 180$ мэВ (вместо 160 мэВ) GSMBE, 3 КЯ, 5 материалов, 40 периодов, $\lambda = 4,9$ мкм BH, HR, AR, 5 MMX8 MKM P_{CW} (300 K) = 5,1 BT $T_0 \sim 383 \text{ K} (298 - 373 \text{ K})$ КПД = 21 % и 27 % (для CW и импульсного режима)

Рекорды в импульсном и непрерывном режиме

 Импульсный режим, λ = 200 нс; T = 298 К; широкий лазер (400 мкм); L = 3 мм; ері-up/Cu; λ = 4,45 мкм; 120 Вт! [Razeghi et al., 95, 221104 (2009)]

2. Непрерывный режим при T = 80 K; BH, HR, 5 ммх12,5 мкм, λ = 4,6 мкм; P = 7,3 BT; КПД = 30 %; [OptEng, 49, 111105(2010)]
λ = 9 мкм; P = 2 BT (300 K) [Patel et. al., OE, 20, 24272(2012)]

3. Обычно РОС-лазеры дают ~ 0,1 Вт мономодового излучения. Рекорд получен на вертикальной схеме переходов с двухфононным опустошением. Эффективная связь с поверхностным плазмоном. BH, HR, AR, 5 ммх8 мкм; $T = 298 \text{ K}; \lambda = 4,8 \text{ мкм}; P_{CW}$ (298 K) = 2,4 BT, 30 дБ, перестройка 2084-2088 см⁻¹ при токе 1-1,7 A, 1 лепесток. [Razeghi et al., 98, 181106 (2011)] О КПД от розетки

ККЛ излучает больше света, чем тепла: КПД > 50 % [NatPhot, 4, 95 (Gmachl et al.) и 99 (Razeghi et al.) (2010)]

Ультрасильная связь с инжектором, что снижает влияние интерфейса. Тогда при толщине инжекционного барьера ~ 1 нм связь (расщепление) составляет ~ 10 мэВ. 3-ямная АО; 2-фононное опустошение. Слегка диагональный переход из-за связи МОСVD; 43 периодов; 3 мм х 14 мкм $\lambda \sim 4,5$ мкм; КПД = 40-50 % при T ≤ 160 К

3-ямная AO, однофононное опустошение и одноямный инжектор Слегка диагональный переход При низких T обратный заброс мал и можно снизить вольтовый дефект MBE; 80 периодов; 2 мм х 6 мкм λ ~ 5 мкм; КПД = 53 % при 40 К

Расширение спектрального диапазона генерации

Перестройка длины волны излучения ККЛ

Мечта спектроскописта: узкая линия излучения, перестраиваемая в широкой области спектра. Решения: РОС-лазеры (область перестройки 10-20 см⁻¹)

Внешний дисперсионный резонатор (100-500 см⁻¹)

Ширина полосы обеспечивается так:

- 1. Гетерогенная АО с разными λ (Faist). Получено Δk = 160 см⁻¹. Трудно получать одномодовый режим из-за конкуренции мод.
- 2. Bound-to-continuum, 5 разных каскадов (Faist, Δk = 432 см⁻¹). Линия ЭЛ асимметрична и ее ширина падает с ростом напряжения.
- 3. Continuum-to-continuum (Gmachl). Получено Δλ/λ₀ ~ 0,2. Однако, нужна селективная инжекция для каждого состояния, утечка носителей в высоколежащие состояния и неоднородное уширение.
- 4. Dual-upper-state to single-lower-state (Нататики Phot.). Верхняя пара уровней получена в результате антикроссинга. Далее нижними состояниями служил квазиконтинуум (multiple-lower-state).
 Получена очень широкая (Δk ~ 500 см⁻¹, λ ~ 8,7 мкм, Δλ/λ₀ ~ 0,4), асимметричная линия ЭЛ и ее ширина слабо зависела от напряжения . Пороговая плотность тока очень слабо зависела от температуры (T₀ ~ 510 K).

Основные проблемы при разработке длинноволновых лазеров (выше энергии LO-фонона)

- 1. При уменьшении энергии фотона труднее создать инверсию, т. к. время жизни верхнего лазерного уровня уменьшается из-за увеличения скорости рассеяния с участием LO-фонона.
- 2. Утечка носителей из инжектора непосредственно на нижний лазерный уровень аналогично становится больше.
- 3. Малая энергия фотона приводит к низкой вольтовой эффективности: отношение уменьшения энергии фотона к полному уменьшению энергии на всей структуре.
- 4. Волноводные потери растут как квадрат длины волны излучения.

Нужна оптимизация: повышение эффективности инжекции и экстракции электронов, снижение обратного заброса и утечек носителей

Для гетеропары GaInAs/AlInAs ($\hbar \omega_{LO} = 34 \text{ мэB}$) $\lambda_{max} = 24 \text{ мкм}$ Дальше не пускает LO-фонон!

Продвижение в коротковолновую область

Проблемы:

1. Утечка в континуум из-за термической активации носителей

- 2. Междолинное рассеяние в Х- и L-долины (в III-V)
- 3. Резонансное перепоглощение внутри области экстракции
- 4. Сужение квантовых ям ужесточает требования к качеству интерфейса и контролю напряжений в процессе роста

5. Увеличивается рабочее напряжение, т.е. проблема тепловыделения

Решения:

1. InAs/AlSb на InAs: $\lambda = 2,6$ мкм; 5,5 кА/см² и 260 мВт при 80 К [Баранов и др., APL, 96, 141110(2010)]

2. Композитные ямы и барьеры $In_{0.73}Ga_{0.27}As/AlAs(Sb)/InP: \lambda = 3,1$ мкм; 3,5 кA/см² и 120 мВт при 80 К [Masselink et al., SPIE, 688913 (2008)]

3. $In_{0.7}Ga_{0.3}As/AlAs(Sb)/InP: \lambda = 3,3$ мкм; 3,5 кA/см² и 3,5 Вт при 300 К [Cockburn et al., 97, 031108 (2010))]

4. Без Sb, но с AlAs! $In_{0.72}Ga_{0.28}As/In_{0.52}Al_{0.48}As$ -AlAs/InP; bound-enlarged continuum + split-injector barrier; L-долина на 30 мэВ выше Х-долины, и обе они выше верхнего лазерного уровня): $\lambda = 3,3$ мкм; 3,5 кА/см² и ~ 1 Вт при 300 К; до 350 К [Faist et al., 98, 191104 (2011)]

Роль междолинного рассеяния для коротковолновых ККЛ на основе напряженной гетеропары InGaAs/AlInAs (NRE design) [Patel et al., SPIE, 73250L(2009); 79531L(2011); APL, 95, 1411113(2009)]

λ, мкм	Импульсный режим (т= 500 нс)		Непрерывный режим		Комментарий	
	Р, Вт	КПД, %	Р, Вт	КПД, %		
3,6	0,05 7 мм х 8 мкм		0,05 6 мм х 6 мкм		MBE; 35 каскадов; epi-down; AlN; BH; HR; 266 К; τ= 300 нс. L- и Х-долины уже ниже верхнего лазерного уровня	
4,0	2,18	10,5	0,75	5	MBE; 40 каскадов; epi-down; AlN; 3,65 ммх8,7 мкм; BH; HR; AR; 293 К L- и Х-долины совпадают и находятся на 45 мэВ выше верхнего лазерного уровня	
4,6	2 (AlN) 4,5 Алмаз	15,4	1,2 (AIN) 3 Алмаз	13	3 ммх9,5 мкм (AlN); 5 ммх15 мкм (Алмаз); BH; HR; AR; epi-down; 293 K L-долина на 30 мэВ выше Х-долины, и обе они выше верхнего лазерного уровня	

ККЛ с внешним дисперсионным резонатором Faist et al., SS&T, 25, 083001(2010)

Область плавной перестройки частоты и мощность излучения лазера с внешним дисперсионным резонатором (CW, 950 мА, -30 °C) (Faist et al., AP, B92, 305(2008))

ККЛ с внешним резонатором ($\lambda = 7,6 - 11,4$ мкм)

[Faist et al., APL, **95**, 061103(2009)]: 5 активных областей, 76 каскадов, переходы «связанное состояние \Rightarrow континуум», область 7,6 – 11,4 мкм (432 см⁻¹), схема Литтрова, $\delta v = 0,12$ см⁻¹, $J_{th} = 6$ кА/см², $P_{_{\rm ИМП}} \sim 1$ Вт при 15 ⁰С

Схемы ККЛ с переходами «дублет ⇒ континуум» [Hamamatsu Photonics, Yamanishi et al., OE, **19**, 2694 (2011);APL, **98**, 231102 (2011)]

Согласованная пара InGaAs/InAlAs, MOVPE, 5 КЯ, 40 периодов, переход «дублет ⇒ континуум»

 $\lambda \sim 8,7$ мкм; $\Delta \lambda / \lambda_0 \sim 0,4$; $\Delta k = 500$ см⁻¹; $J_{th} = 2,6$ кА/см²; Ширина ЭЛ слабо зависит от Т и V при T > 300 К; $T_0 \sim 510$ К; $P_{\rm имп}(300$ К) ~ 1 Вт; $P_{\rm CW}(30~^0{\rm C}) \sim 0,1$ Вт на AlN;

Недавно: $\lambda \sim 6,8$ мкм; T = 300 K; CW; $\Delta\lambda/\lambda_0 \sim 0,4$; $\Delta k \sim 600$ см⁻¹; $J_{th} = 1,5$ кA/см²; $T_{max} = 100$ °C ³⁶
Расширение области перестройки ККЛ с внешним резонатором

О деградации и сроке службы ККЛ

Такие испытания проводились в основном на системе AlInAs/GaInAs ($\lambda = 4,6 - 4,8$ мкм). Она содержит много In, препятствующего такому доминирующему механизму деградации как образование и распространение дислокаций. 1. Лазер $\lambda = 4,8$ мкм (strain-compensated); 11 мкмх3 мм; HRcoated; epi-up; In/Cu; CW; T = 298 K; I = 0,85 A (чуть выше порога); P = 0,2-0,3 BT; Нет изменений в течение 21000 ч (~ 2,4 года)! [Razeghi et al., NJP, **11**, 125017 (2009)]

 Лазер λ = 4,6 мкм (strain-compensated); 11 мкмх3 мм; HRcoated; epi-up; AuSn/AlN; CW; P = 2,1 BT; T = 298 K. Нет изменений в течение 3560 ч! [Patel et. al., OptEng, 49, 111105(2010)]
80 K: BH, HR, 5 ммх12,5 мкм, CW, P = 7,3 BT; КПД = 30 %; сотни часов [Patel et. al., OptEng, 49, 111105(2010)]

Коммерциализация ККЛ за рубежом

Компания	Выращивание лазерных ГС	Разработка ККЛ	Системы на ККЛ
AdTech Optics Inc.	X	X	
Aerodyne Research			X
Alcatel-Thales III-V Lab		X	
Alpes Lasers		X	
Archcom Technology Inc.	X		
Cascade Technologies		X	X
Daylight Solutions Inc.			X
Hamamatsu Photonics		X	
IQE	Χ		
Laser Components Inc.		X	
Maxion Technologies Inc./PSI	X	X	
Nanoplus Inc.		X	
Neoplas Control Inc.			X
nLIGHT Corporation	X		
Pranalytica Inc.		Χ	X
QuantaRed Technologies			X
Spire Corporation	X		

Некоторые применения

Обобщенно:

- 1. Спектроскопия (разрешение ≤10⁻⁴ см⁻¹)
- 2. Газоанализ (чувствительность ppm ppb)
- 3. Медицина (дыхательная диагностика)
- 4. Гетеродинирование в ИК области спектра
- 5. Военные применения:

ИК подсветка, буи, маяки, секретная связь в свободном пространстве, мониторинг без риска быть обнаруженным, усилители света в ПНВ, опознавание «свой-чужой» и т.д.

Мощная и эффективная лазерная система на основе ККЛ для целей обороны и безопасности

Pranalytica, C.K.N. Patel, SPIE Proc., 7325OL(2009)

На чипе при T = 293 K, CW, P = 3 BT! $\lambda = 4,6$ мкм (15 мкмх5 мм, алмаз) Система при T = 293 K, CW, P > 2 BT! $\lambda = 4,6$ мкм кпд ~ 10 % Фонарик при T = 293 K, _П_, P > 100 мВт $\lambda = 4,6$ мкм; срок службы ~ 10 ч P > 20 мВт $\lambda = 9,6$ мкм; срок службы ~ 10 ч

Герметичный монтаж ККЛ

Лазерная система 1101-46-НР-4000 (блок питания, ТХ Пельтье и лазерная головка) Bec = 7,3+1,9 кГ

Радарная система противодействия в средней ИК области спектра типа ICM100

Cascade Technologies, Scotland, UK

Применение – глушилка для тепловых ракет Длина волны излучения 4,6 мкм Ток до 20 А Длительность импульса 50 – 5 мкс Частота повторения < 5 МГц Средняя мощность 200 мВт при скважности 60% КПД (от розетки) > 5 % Качество пучка М² ~ 2 Область коллимирующей оптики 2 – 6 мкм Диаметр выходящего пучка 4 мм Расходимость в дальней зоне 1мрад Рабочая температура 5 \div 35 ⁰С (воздушное охлаждение) Малые массогабариты

C. Subran, M. Radunsky, M. Henson Opton Laser Int.+ Daylight Solutions Photoniques, **55**, 52(2011)

> Необнаружимый ПНВ, ручной фонарик (длина волны излучения 4,8 мкм, 1,35 мВт, расстояние до цели до 225 м)

Скрытая, необнаружимая связь в свободном пространстве

Военные применения: ИК помехи (контрмеры), освещение целей в ИК области спектра, ИК маяки (буи)

Летом 2009 DARPA выделила по контрактам: 3,3 млн долларов для Pranalytica 2,5 млн долларов для Princeton University 2,0 млн долларов для Northwestern University

Achmed and his boyfriend

Выводы

Таким образом, дизайн в современных рабочих схемах ККЛ не исчерпан и прослеживаются следующие тенденции.

- Увеличивается энергетический зазор между верхним лазерным уровнем и ближайшими высоколежащими состояниями вплоть до континуума. При этом учитывается рассеяние в боковые долины.
- 2. Увеличивается вольтовый дефект для повышения рабочей температуры.
- 3. Для снижения токов утечки в качестве барьеров используется AlAs
- 4. Для коротковолновых ККЛ добавляется Sb вплоть до AlSb. Ведутся поиски других гетеропар.

Это позволило существенно улучшить характеристики ККЛ, достигнув таких рекордных значений как:

- 1. На основе гетеропары AlInAs/GaInAs получен диапазон излучения от 3,3 до 24 мкм, а с гетеропарой InAs/AlSb до 2,6 мкм.
- 2. Т₀ = 500 К (параллельность подзон и время, ограничено LO-фононом).
- 2. Мощность излучения до 7 и 120 Вт в непрерывном и импульсном режиме.
- 3. КПД от розетки более 50 % при низких температурах.
- 4. Ширина линии ЭЛ до 600 см⁻¹ \Rightarrow ККЛ с внешним дисперс. резонатором.

Перспективы, проблемы

Дизайн лазеров еще большой и не исчерпан.

Увеличение мощности и КПД. Сейчас в среднем 1 Вт при $\lambda = 4$ -10 мкм (с оптимизмом до 15 мкм). Прогнозируется ~ 10 и более 100 Вт в непрерывном и импульсном режиме при комнатной температуре. Высокие значения КПД лазеров в непрерывном режиме > 30 % (сейчас в группе Разеги до 25 %). Коротковолновая сторона: Будут улучшаться характеристики лазеров на антимонидах для области спектра 2-4 мкм. Для оптической связи (λ ~ 1,5 мкм) надо изучать новые гетеропары с большим ΔE_c (нитриды, II-VI). Ликвидация пробела 20-70 мкм. Расширение полосы остаточных лучей: GaP/AlP (идеальное согласование) и InP/GaP (обе гетеропары удобны для МОС-гидридной эпитаксии), GaN/AlN (большой разрыв и большая $\hbar \omega_{LO}$). ТГц-лазеры: Хотелось бы довести рабочую температуру до термохолодильников Пельтье и увеличить мощность для облучения целей и для пропускания сквозь частично поглощающую атмосферу. СозданиеККЛ на квантовых точках (Сурис и др.) с низкими значениями пороговой плотности тока (~ 10 A/см^2) и высокой $T_0 \sim 400 \text{ K}$.

Благодарю за внимание!

Немного о терагерцовых источниках излучения и ККЛ

Терагерцовый ККЛ [Faist, Hu et al., OE_13_331(2005)]

GaAs/Al_xGa_{1-x}As (x = 0,1-0,3); барьер тоньше для транспорта и толще для снижения паразитной связи с верхними уровнями; 4-ямная ГС; вертикальный переход; 1 фонон; плазмонный волновод или металлический (Cu,Au), $\Gamma \sim 0,3$; L = 1 – 2 мм; 2 фонона не сильно улучшают

5,4/7,8/**2,4**/6,4/**3,8**/14,8/**2,4**/9,4 = 52,4 нм; ^x175 каскадов = 9,2 мкм $N(Si) = 2x10^{16}$ см⁻³ 49

П/п терагерцовые источники излучения

Тип лазера и условия	Материал	Т, К	λ, мкм	f, ТГц	Р, мВт
ККЛ импульсный	GaAs/Al _{0,15} Ga _{0,85} As	5-200	60-250;	1,2-5;	8-56;
J _{th} = 0,1-0,6 кА/см ²		(3 ТГц)	70	4,7	248 (5K)!
ККЛ непрерывный	GaAs/Al _{0,15} Ga _{0,85} As	5-117	60-250;	1,2-5	0,4-12;
$J_{th} = 0,2-0,6 \ \kappa A/cm^2$		(3 ТГц)	70	4,7	135 (5K)!
0,7 кВ/см; 0,42 Т	p-Ge:Ga	4-20	75-300	1-4	0,02-1,3
СО ₂ -лазер; 30 кВт/см ² ; 0,1 мкс; 1Гц;	Si:P (Sb, Bi)	4	50-60	5 - 6	~ 10 ³
ЭЛ; 100-150 нс; 413 Гц	Si:B; р=1-10 Ом·см	4-150	37	8,1	0,03 (4K)
Nd-лазер + парам. генер.; ~ 17 МВт/см ² ; 5 нс; 10 Гц	GaSe; толщина 15 мм	300	3 - 3540	0,1 - 110	2x10 ⁵
1,2 Т; 1,56 мкм; 0,16 Вт; 0,1 пс; 50 МГц	n-InSb, 4х10 ¹⁴ см ⁻³	300	300 - 900	0,3 - 1	Мах у 0,5 Тгц
ЛОВ; 1,5 – 6 кВ	-	300	300	1	0,5 -3

Терагерцовые ККЛ на основном состоянии (~ 5 ТГц)

Hu&Reno, APL, 101, 151108(2012) Транспорт и генерация идут только (!) по основным состояниям КЯ

Зависимость максимальной рабочей температуры от длины волны излучения ТГц ККЛ [Faist et al., EL, 46, S46 (2010)]

52

Параметрическая (безинверсная) генерация: вторая гармоника, суммарная и разностная частота

Ограничения для продвижения в ТГц область: короткое время жизни верхнего, возбужденного состояния, Друдевское поглощение, толстые слои. Решеточная нелинейность в полупроводниках GaAs и InAs на 2-3 порядка выше, чем у нелинейных кристаллов, а для квантоворазмерных структур в области резонанса ожидается еще на пару порядков выше.

Пусть имеем: ω_1 и $\omega_2 \Rightarrow 2\omega_1, 2\omega_2, \omega_1 + \omega_2, \omega_1 - \omega_2$

Известен гигантский нелинейный отклик для резонансных межподзонных переходов в связанных КЯ. Для того, чтобы наблюдать его, надо решать задачу накачки и фазового синхронизма на нужной частоте. Проводятся расчеты и испытываются различные схемы. Рекорд на второй гармонике получен P = 2 мВт при λ = 4,45 мкм (A. Belyanin, C. Gmachl et al., EL, **40**, 1586 (2004)). Недавно получена вторая гармоника P = 35 мкВт при λ = 2,95 мкм и 300 К (Belkin et al., EL, **47**, 667 (2011)). При λ = 2,6 мкм получены мкВт.

 $E(B/cM) = 27,5 \frac{\sqrt{P(Bm/cM^2)}}{N}$ При Р ~ 1 Вт и S = 2x10 мкм² = 2x10⁻⁷ см² E = 27,5 $\sqrt{2x10^{-7}/3},3 = 37,3x10^4 = 3,7x10^5$ В/см

Схема междузонного ККЛ на основе гетероперехода II типа AlSb/InAs/GaInSb/GaSb [Meyer et al., APL, 72, 2370 (1998)]

 $\Delta E_{c} \sim 2$ эВ; m(InAs) = 0,024m₀ Инжектор InAs/Al(In)Sb

1. Интересная область 3 – 4,2 мкм

2. Облегчена накачка, т.к. междузонные переходы медленнее времени рассеяния на фононах

3. Униполярен, хотя включена валентная зона. Нет оптических потерь в обкладочных слоях р-типа

4. Однако технология этих материалов сложнее

Physica, **E7**, 69 (2000):

Р_{имп} = **4** W с одной грани, Т_{max} = **217** K APL, **88**, 161103 (2006):

 $\lambda = 3.3 - 3.6$ мкм,

Р (CW, 78 K) = 1.1 Вт, КПД = 21 %

OptEng, **49**, 111101 (2010):

```
Р(СW, >300 К) > 10 мВт
```

Мощные междузонные ККЛ, работающие в непрерывном режиме при > **300 К** [Meyer et al., OE, **20,** 20894 (2012)]

P = 0,29 Вт при 300 К в непрерывном режиме $\eta(WPE) = 15$ % при 300 К в непрерывном режиме

ККЛ на основе InAs/AlSb с длиной волны излучения около 2,6 мкм [Баранов и др., APL, 96, 141110 (2010)]

3 ямы; e₃ − e₂ ≈ 0,47 эВ 2,6/4,2/1,7/3,7/1,7/3,3/1,4/2,8 **InAs/AlSb** $\Delta E_c = 2,1$ эВ; Растояние между Г-L минимумами в InAs составляет 0,73 эВ. При квантовании уровни в боковых долинах движутся вверх медленне из-за большей m^{*}. Фиксируем верхний (ниже L-минимума) и понижаем нижний Г-уровень. Для этого ослабляется связь между активными квантовыми ямами InAs. Барьер до 1,7 нм, а яму поуже для заданной энергии. Таким образом снижается утечка носителей в L– долину.

GSMBE; n-InAs(100); 30 каскадов HR; $\lambda = 2,63-2,65$ мкм; до 175 К, $P_{\text{имп}} = 260$ мВт (80 К; $\tau = 100$ нс; f = 10 кГц)

Связь между шириной запрещенной зоны и постоянной решетки для некоторых изопериодических полупроводников типа III-V

ДЛС в импульсном режиме (На примере этилена C_2H_4 при $\lambda = 11,4$ мкм)

Быстропротекающие процессы в химии, технологии и др.

Схема лазерного газоанализатора на ККЛ

Сенсор следов газа на основе обычного ККЛ или междузонного ККЛ

Дыхательная диагностика

[Институт лазерной медицины при Университете в Дюссельдорфе; OPN, 16, 30 (2005)]

Длина волны 3 – 10 мкм

Следы выдыхаемых газов и их средняя

концентрация у здорового человека

Выдыхаемый газ	Сред. концентрация
Метан СН ₄	2 – 10 ppm
Этан С ₂ Н ₆	0 – 10 ppb
Пентан C_5H_{12}	0 – 10 ppb
Окись азота NO	10 – 50 ppb
Окись углерода СО	1 – 10 ppm
Сульфид карбонила OCS	0 – 10 ppb
Закись азота N ₂ O	1 – 20 ppb
Изопрен С ₅ Н ₈	50 – 200 ppb
Аммиак NH ₃	0 – 1 ppm
Ацетон (CH ₃) ₂ CO	0 – 1 ppm

Анализ выдыхаемого воздуха

- Быстро
- Точно
- Бесконтактно
- Недорого

Молекула	Заболевание	λ, мкм
Окись азота NO	Астма	5,2
Отношение изотопов ${}^{13}\text{CO}_2/{}^{12}\text{CO}_2$	Язва	4,3
Аммиак	Работа почек	6,0
Сульфид карбонила COS	Работа печени; экскременты	4,8
Алканы (пред. углево- дороды ряда С _n H _{2n+2})	Рак молочной железы	3,3
Формальдегид CH ₂ O	Рак мол. железы	5,7
Ацетальдегид C_2H_4O	Рак легких	5,7
Ацетон C_3H_6O	Диабет	3,4
Сероуглерод CS_2	Шизофрения	6,7
Этан С ₂ Н ₆	Окисл. стресс	3,4

Измерения следов газа в стратосфере и тропосфере

Аегодупе Research Inc. $\lambda = 4,5 - 10,5$ мкм P (CW) = 1 - 10 мВт $\delta v < 0,01$ см⁻¹ Многоходовая кювета (76 м)

Газ	Частота, см ⁻¹	ррв (76 м; 1 с)	ppb (100 c)
C ₂ H ₄	960	1	0,5
NH ₃	967	0,2	0,06
O ₃	1050	1,5	0,6
CH ₄	1270	1	0,4
N ₂ O	1270	0,4	0,2
H ₂ O ₂	1267	3	1
SO ₂	1370	1	0,5
NO ₂	1600	0,2	0,1
HONO	1700	0,6	0,3
HNO ₃	1723	0,6	0,3
НСНО	1765	0,3	0,15
НСООН	1765	0,3	0,15
NO	1900	0,6	0,3
OCS	2071	0,06	0,03
СО	2190	0,4	0,2
N ₂ O	2240	0,2	0,1
¹³ CO ₂ / ¹² CO ₂	2311	0,5 %	0,1 %

Фактор α отражает вариации N активной среды (флуктуации инверсии населенностей), что приводит к «дрожанию» частоты

Обычно α = 5-30, а для ККЛ α ≈ 0 (реально α = 0,5-2)

- 1. Свободная генерация, $\lambda = 8,5$ мкм, $\delta v = 150$ кГц (5х10⁻⁶ см⁻¹), 15 мс
- 2. Со стабилизацией частоты, $\lambda = 8,5$ мкм, $\delta v = 12$ кГц (4x10⁻⁷ см⁻¹)
- 3. Гетеродинирование двух ККЛ $\delta v = 2-5,6 \Gamma \mu$ (~ 10⁻¹⁰ см⁻¹), ~1 с

Зависимость максимальной рабочей температуры от длины волны излучения ТГц ККЛ [Faist et al., EL, 46, S46 (2010)]

Температурная перестройка РОС-лазеров в окнах прозрачности атмосферы, где распространенные газы имеют линии поглощения [Capasso et al., RPP, 64, 1533 (2001); CPL, 487, 1 (2010)]

Брэгговская решетка с шагом $\Lambda = \lambda/2N$ расположена над активной областью ККЛ и в первом порядке выделяет одну моду

Wavelength (µm)

Index refraction profile and mode intensity distribution

TEM image of diagonal QCL

[Capasso et al., S&S, **66**, 1(2000)]

Итоги и перспективы

Важнейшие итоги в области ККЛ

1. Длина волны излучения лазеров изменяется в широкой ИК области спектра: 3,4 – 24 мкм (AlInAs/GaInAs) и 60-250 мкм (AlGaAs/GaAs). При этом путем подбора размеров ям и барьеров оказалось достаточно 2 гетеропар. Самая короткая длина волны 2,6 мкм получена с использованием антимонидов, а самая большая длина волны 440 мкм получена с помощью квантующего магнитного поля (25 T).

2. Разработаны перестраиваемые одномодовые лазеры: РОС-лазеры с областью плавной перестройки 10-20 см⁻¹; ККЛ с внешним резонатором дают до 170 см⁻¹ при $\delta v \leq 1$ МГц (3х10⁻⁵ см⁻¹). Ее можно увеличить (до 500 см⁻¹) в гетерогенных ККЛ и в схемах с уширением уровней.

3. Измерена узкая ширина линии излучения: < 100 кГц в режиме свободной генерации и <10 кГц (3х10⁻⁷ см⁻¹) при стабилизации. Сейчас уже 1< кГц. Миним. ширина линии идеально описывается формулой Шавлова-Таунса.

4. Униполярная природа и эффект каскадирования приводит к высокой мощности излучения при 300 К: более ватта (до 3-5 Вт) в непрерывном режиме и десятки ватт (широкий 400 мкм, $\lambda = 4,45$ мкм; 120 Вт) в импульсном режиме; для $\lambda = 10$ мкм P= 0,6 и 25 Вт; КПД составляет десятки процентов. Работа в непрерывном режиме при 300 К (3,7 – 10 мкм) с Р ~ 1Вт.

Важнейшие итоги в области ККЛ

5. Высокая рабочая температура (большое T₀) обусловлена параллельными подзонами и временем жизни, ограниченным оптическим фононом. Межподзонные переходы; уширение не чувствительно к T (T₀ составляет несколько сот градусов)

6. Благодаря высокоскоростной динамики ККЛ продемонстрирована высокочастотная модуляция (включая цифровую) вплоть до 100 ГГц.

 Короткие времена релаксации электронов и времени жизни фотонов в резонаторе (~ 1-3 пс) позволяют генерировать короткие (τ = 89 пс, f = 100 МГц) импульсы излучения. Ультракороткое время жизни (мньше времени жизни фотона в резонаторе), поэтому нет релаксационных колебаний.
Благодаря высокой мощности излучения в активной области (> 10⁵ B/см) и большой нелинейной восприимчивости наблюдались когерентные явления при 300 К (удвоение частот, разностная частота), что важно для создания новых источников излучения. Большая нелинейность приводит также к самосинхронизации мод с частотой биений 13 ГГц.

9. Усиления хватает, чтобы получать генерацию «без инжектора» (до 350 К).

10. Срок службы некоторых лазеров доведен до 2,5 лет (λ = 4,8 мкм). Наступает период коммерциализация ККЛ.
Выводы

Такие уникальные характеристики ККЛ получены благодаря тому, что совершенствуются старые и создаются новые рабочие схемы ККЛ, развивается технология как молекулярно-лучевой, так и МОСгидридной эпитаксии, а также технология постростовой обработки и монтажа лазеров. Методом МОС-гидридной эпитаксии созданы ККЛ, излучающие в зависимости от параметров активной области и температуры в области спектра 5 – 12 мкм. Характеристики лазеров уже близки к значениям, достигнутым методом МЛЭ.

Имеющийся уровень технологии полупроводников А³В⁵ позволяет массовое производство для некоторых областей ИК спектра.

Преимуществами ККЛ остаются малые массо- и весогабариты, жесткость (например, по ср. с параметрическим генератором). С учетом надежности, воспроизводимости и долговременной стабильности ККЛ находят применение в различных областях, както: газоанализ, мониторинг окружающей среды, медицина, военные применения (ИК-подсветка, глушилки, связь).

Перспективы, проблемы

Дизайн лазеров еще большой и не исчерпан.

Увеличение мощности и КПД. Сейчас в среднем 1 Вт при $\lambda = 4$ -10 мкм (с оптимизмом до 15 мкм). Прогнозируется ~ 10 и более 100 Вт в непрерывном и импульсном режиме при комнатной температуре. Высокие значения КПД лазеров в непрерывном режиме > 30 % (сейчас в группе Разеги до 25 %). Коротковолновая сторона: Будут улучшаться характеристики лазеров на антимонидах для области спектра 2-4 мкм. Для оптической связи (λ ~ 1,5 мкм) надо изучать новые гетеропары с большим ΔE_c (нитриды, II-VI). Ликвидация пробела 20-70 мкм. Расширение полосы остаточных лучей: GaP/AlP (идеальное согласование) и InP/GaP (обе гетеропары удобны для МОС-гидридной эпитаксии), GaN/AlN (большой разрыв и большая $\hbar \omega_{IO}$). ТГц-лазеры: Хотелось бы довести рабочую температуру до термохолодильников Пельтье и увеличить мощность для облучения целей и для пропускания сквозь частично поглощающую атмосферу. Большая характеристическая температура ($T_0 = 1000$ K).

Качество пучка: будет оптимизировано.

СозданиеККЛ на квантовых точках (Сурис и др.) с низкими значениями пороговой плотности тока (~ 10 A/см²) и высокой T₀ ~ 400 K.

Интересные молекулы, доступные для изучения в средней ИК области спектра

7**-1**0 µm

Leak detection

- Ambient air quality
- Stack emissions

13

Тезисы

К настоящему времени разработаны квантовые каскадные лазеры (ККЛ) с рекордными значениями таких их характеристик как рабочая и характеристическая температура, область спектра генерации, мощность излучения, одномодовый спектр излучения и коэффициент полезного действия (КПД). Это оказалось возможным благодаря как оптимизации дизайна активной области, так и развитию методов постростовой обработки лазерной наногетероструктуры. Оптимизация рабочей схемы заключается в достижении эффективной инжекции и экстракции электронов, а также в уменьшении токов утечки и термического обратного заброса носителей заряда. Диапазон спектра генерации составляет от 3 до 24 мкм в средней ИК области и от 70 до 250 мкм в далекой (терагерцовой) ИК области спектра. Рабочая температура коротковолновых (4-12 мкм) ККЛ заметно превышает комнатную (до 400 К). Характеристическая температура T_0 достигает значений 500 К, т.е. имеет место очень слабая температурная зависимость порогового тока от температуры. Особенно большая мощность излучения получена в области спектра 4-5 мкм: до 5 Вт в непрерывном и 120 Вт в импульсном режиме при 300 К. Для одномодовых лазеров типичная мощность излучения составляет около 0,1 Вт, хотя в отдельных случаях она на порядок величины больше. На ККЛ с большим числом каскадов при низких температурах продемонстрирован КПД от розетки более 50 %.