Дистанционное зондирование СН4 и СО2 методом солнечного просвечивания с помощью гетеродинного спектрометра ближнего ИК диапазона

> А. Ю. Климчук^{1,2}, А. И. Надеждинский², А.В. Родин^{1,3}, М. В. Спиридонов², Д.В. Чурбанов¹

¹Московский физико-технический институт

²Институт общей физики РАН им. А.М. Прохорова

³Институт космических исследований РАН

Принципы гетеродинирования:

Ширина спектра принимаемого излучения >> полоса фотодетектора

Жесткие условия согласования фронтов

Напряженность поля ЛО: $E_{lo} = E_{lo} \exp[-i\omega_{lo}t]$ Напряженность поля источника: $E_s = \int_{0}^{\infty} E_{\omega} \exp[-i\omega t] d\omega$ Фототок: $i = K |\vec{E}_{lo} + \vec{E}_{s}|^{2} = K [E_{lo}|^{2} + [E_{lo}E_{s}^{*} + E_{lo}^{*}E_{s}] + |E_{s}|^{2}]$ $[\vec{E}_{lo}\vec{E}_{s}^{*} + \vec{E}_{lo}^{*}\vec{E}_{s}] = \int_{0}^{\infty} E_{lo}E_{\omega} \exp[-i(\omega_{lo} - \omega)t] d\omega + KC$

> Гетеродинный прием переносит сигнал из высокочастотной области в низкочастотную

 Электрический сигнал в стат. смысле не отличается от собственного шума системы

•
$$\Omega S \approx \lambda^2$$

Почему плохо работать в ближнем ИК

в среднем ИК

Или не так плохо?

Вывод:

При затменных наблюдениях достаточно удобно работать в ближнем ИК. Проигрыш в 15 раз компенсируется другими плюсами разработанного приемника

Основная идея:

• Постоянная частота гетеродина

• Широкая полоса ПЧ

Преимущества:

- Не требуется анализатора спектра промежуточных частот
- Широкий спектральный диапазон
- Детектирование на пределе дробового шума

Недостатки:

• Потери в чувствительности как \sqrt{N} , где N – число точек на импульс

• Сканирование частоты гетеродина

• Узкая полоса ПЧ

Как выглядит сигнал в таком спектрометре?

возвести в квадрат

сгладить и накопить

Схема гетеродинного спектро-радиометра V1

Оптимальная мощность гетеродина

Оптимальная мощность гетеродина, которой соответствует чувствительность **2 x дробовой предел,** лежит в области 100 -500 μW.

Измерение гетеродинного сигнала

Атмосферные измерения

Signal Noise Ratio ~ 250.

Восстановление вертикального профиля

The inverse problem for identifying the gas concentration can be represented as follows

$$\tau(\nu) = \int_{0}^{H} \tilde{k}(\nu,\eta)\rho(\eta)d\eta, \ \nu \in [\nu_0,\nu_1].$$

The kernel of this equation is the absorption coefficient $\tilde{k}(\nu,\eta) = \sum_{i} k_i(\nu,\eta)$ it is the sum of absorption coeffecients of separate lines, right side $\tau(\nu)$ is the measured optical depth.

Восстановление вертикального профиля

The problem in the operator form $A\rho = \tau_{\delta}$ ($||\tau_{\delta} - \bar{\tau}|| < \delta$, here $\bar{\tau}$ - is the exact optical depth, δ - is the noise level). The solution of the inverse problem is the minimum of the functional

$$M^{\alpha}[\rho^{\alpha}] = ||A\rho^{\alpha} - \tau_{\delta}||^{2}_{[\nu_{0},\nu_{1}]} + \alpha \Omega[\rho^{\alpha}].$$

It is proved [*] that if $\bar{\rho}$ is the exact solution for the exact right side $(A\bar{\rho} = \bar{\tau})$ then for the special parameter $\alpha(\delta)$ takes place the convergence $\rho^{\alpha(\delta)} \to \bar{\rho}$ when $\tau_{\delta} \to \bar{\tau}$.

[*] A.N. Tikhonov, A.S. Leonov, and A.G. Yagola. Nonlinear ill-posed problems. V. 1,2. Chapman and Hall, United Kingdom, 1998.

Восстановление вертикального профиля

Схема гетеродинного спектро-радиометра V2

Измерение СО2

Допплеровский сдвиг в атмосфере

 $\Delta k = \frac{\left(\vec{k}, \vec{V}\right)}{c}$

Восстановление скорости ветра

 $V = 100 \pm 10 \text{ m/c}$

Выводы

- 1. Измерен метан в атмосфере
- 2. Восстановлен вертикальный профиль метана
- 3. Измерен спектр поглощения углекислого газа в атмосфере
- 4. Определен стратосферный ветер