

Измерение пространственного распределения температуры в нестационарных зонах горения методом абсорбционной спектроскопии с диодными лазерами

М. А. Большов, Ю. А. Курицын, В. В. Лигер, В. Р. Мироненко

Институт спектроскопии РАН, Троицк Московской области, Россия

А.И. Надеждинский, Я.Я. Понуровский

Институт общей физики им. А.М. Прохорова РАН, Москва Россия

ДЛС-22 29.10.2014

1.Изучение эффективности сгорания топлива в сверхзвуковых камерах

2.Верификация модельных представлений о процессах горения, стимулируемых плазменным разрядом

3.Экспериментальные данные для оптимизации конструкции плазменного активатора горения

Параметры установки плазменного горения ИАДТ-50 в Институте Высоких Температур РАН

Топливо H_2 , ethylene M ~ 2 (supersonic flow) Скорость потока 300-2000 K Температура 100-300 Torr Полное давление Н₂О концентрация 1-10 % Оптический путь 70 mm ~500 ms Продолжительность цикла ~100 ms Продолжительность разряда Желательное разрешение : 1мсек (временное) 1-2 мм (пространственное)

Абсорбционные измерения температуры при термодинамическом равновесии

Отношение интегральных коэффициентов поглощения S при данной температуре T

 $R = \frac{S_1(T)}{S_2(T)} = A \exp(-hc\Delta E/kT)$

А- определяется спектроскопическими параметрами переходов, ⊿ Е - разность энергий нижних уровней переходов

Выбор рабочего диапазона лазера

Критерии:

- -доступные коммерческие лазеры;
- значительные вариации интенсивности линий с температурой;
- разумная мощность излучения (≥ 10 мВт);

-несколько подходящих линий в диапазоне быстрой перестройки ДЛ ~ 1 см⁻¹;

-минимальное наложение линий

1.39 мкм DFB лазер фирмы NEL

T = 296 K								
ν	S(cm/mol)	γ (air)	γ (H ₂ C) E _{low}	No.			
7189.34444	6.213E-22	0.1001	0.49	142.2785	1			
7189.54142	1.069E-22	0.0549	0.33	1255.1667	2			
7189.71473	2.037E-24	0.0767	0.34	2004.8157	3			
T = 1000 K								
7189.34444	1.449E-22	0.0392	0.1919	142.2785	1			
7189.54142	1.124E-21	0.0288	0.1731	1255.1667	2			
7189.71473	2.785E-22	0.0315	0.1398	2004.8157	3			

Time scale of a run

Общий вид экспериментальной установки сверхзвукового горения в Лаборатории Экспериментальной плазменной аэродинамики ИВТАН

Проблемы и ограничения

1.Интенсивная широкополосная эмиссия плазменного источника

2. Высокий уровень электромагнитных помех

3.Значительный вклад в аналитический сигнал поглощения атмосферной воды вне камеры сгорания

4.Сильные вибрации установки и турбулентные потоки в струе

Теневая фотография турбулентной сверхзвуковой струи вблизи электродов

Съемные панели с прецизионными двухкоординатными манипуляторами

Mirrors set

& photodiode

Фрагмент пользовательского интерфейса

Блок-схема системы управления и сбора информации

Фрагменты отдельных этапов процесса

3D или 2D визуализация процесса

2D-образ динамических спектров и интегральные контуры линий

DLAS Measurements on H₂O Molecule in Experiments on Plasma Assisted Ethylene Combustion on the Plane Wall in Supersonic Flow 30.05.2012

1.ti	i: 80 pixels: 32-bit: 2	2.tif	3.tif:	4.tif:	5.tif	6.tif	7.tif	8.tif	9.tif
	1.1								
							CALCOLOR		
			2. 利用当						
				No. 2 You and a state					
10									
140x3	، لياري 80 pixels; 32-bit; 2	140x380 pixels; 32-bit; 2	140x360 pixels; 32-bit; 1	140x380 pixels; 32-bit; 2	140x380 pixels; 32-bit; 2	140x380 pixels; 32-bit; 2	140x380 pixels; 32-bit; 2	140x360 pixels; 32-bit; 1	140x380 pixels; 32-bit; 2
					*				
-			States and		**************************************			and the second second	
								1947	

Аппаратная коррекция базовой линии

without sample&hold circuit

Программная коррекция базовой линии

Моделирование спектров поглощения

для различных температур

1 2 3

c w h

Корреляционная методика измерения температуры

Вычисление линейной корреляции между экспериментальным спектром и набором модельных спектров ,синтезированных для различных температур с шагом 20 градусов

(Порядковый номер модельного спектра из набора)

Аппроксимация участком спектра

На основе базы данных симулируется участок спектра с выбранными линиями, который подгоняется к экспериментальному спектру. В качестве подгоночных параметров используются:

- положения центров линий,
- параметры базовой линии,
- температура,
- полное давление воздуха и
- концентрация молекул воды.

Последние два параметра важны для правильной аппроксимации линий поглощения воды с учетом коэффициентов уширения воздухом и самоуширения.

Example of the fitting algorithm efficiency

Сравнение двух методов определения температуры по данным поглощения

Номер	Температура, К							
пуска	Подгонка спектром				Корреляционная методика			
02		858	10, 21		868	ST N		
03		836			838	のない		
06		1084			1097			
07		1061	- Ale		1062			
10		1378			1341	1		
		1167	1000		1181	the second		

Основные выводы

Разработана конструкция спектрометра, позволяющая исследовать распределение эффективной температуры в направлении распространения сверхзвукового потока горячего газа.

Разработана схема дифференциального фотоприемного устройства, позволяющая в значительной степени уменьшить влияние на аналитический сигнал

- акустических вибраций,
- электромагнитных помех
- вклада атмосферной воды на балластном участке траектории зондирующего луча

Измерено распределение температуры при сверхзвуковом горении этилена на установке ИАДТ-50 в Институте Высоких Температур РАН. Полученные данные явились основанием для модернизации конструкции плазменного источника

Благодарю за внимание