Мониторинг парниковых газов с помощью гетеродинного спектрорадиометра ближнего ИК диапазона

А. Ю. Климчук^{1,2}, А. И. Надеждинский², А.В. Родин^{1,3}, М. В. Спиридонов², Д.В. Чурбанов¹

¹Московский физико-технический институт

²Институт общей физики РАН им. А.М. Прохорова

³Институт космических исследований РАН

Принципы гетеродинирования:

Ширина спектра принимаемого излучения >> полоса фотодетектора

Жесткие условия согласования фронтов

Напряженность поля ЛО: $E_{lo} = E_{lo} \exp[-i\omega_{lo}t]$ Напряженность поля $E_{s} = \int E_{\omega} \exp[-i\omega t] d\omega$ источника: Фототок: $i = K \left| \vec{E}_{lo} + \vec{E}_{s} \right|^{2} = K \left| E_{lo} \right|^{2} + \left[E_{lo} E_{s}^{*} + E_{lo}^{*} E_{s} \right] + \left| E_{s} \right|^{2}$ $\left[\vec{E}_{lo}\vec{E}_{s}^{*}+\vec{E}_{lo}^{*}\vec{E}_{s}\right]=\int_{0}^{\infty}E_{lo}E_{\omega}\exp\left[-i\left(\omega_{lo}-\omega\right)t\right]d\omega+KC$

 Гетеродинный прием переносит сигнал из высокочастотной области в низкочастотную

 Электрический сигнал в стат. смысле не отличается от собственного шума системы

•
$$\Omega S \approx \lambda^2$$

Почему плохо работать в ближнем ИК

в среднем ИК

Или не так плохо?

Вывод:

При затменных наблюдениях достаточно удобно работать в ближнем ИК. Проигрыш в 15 раз компенсируется другими плюсами разработанного приемника

Основная идея:

- Постоянная частота гетеродина
- Широкая полоса ПЧ

Преимущества:

- Не требуется анализатора спектра промежуточных частот
- Широкий спектральный диапазон
- Детектирование на пределе дробового шума

- Сканирование частоты гетеродина
- Узкая полоса ПЧ

Оптическая схема:

Внешний вид:

Гетеродинный сигнал:

линию»

Реперный канал:

Калибровка частоты:

- Относительная калибровка осуществляется интерференции в эталоне Фабри-Перо
- Абсолютная калибровка осуществляется по известному центру линии поглощения

в реперном канале

Raw dates:

Измерение метана в столбе атмосферы

The inverse problem of methane mixing ratio profile retrieval can be expressed using the equation

$$\int_{0}^{z_{op}} K_{h}(v, z) \rho_{CH_{4}}(z) dz = \tau_{\delta}(v), \quad v \in [v_{0}, v_{1}],$$

Where $\tau_{\delta}(v)$ is the optical depth calculated from the measured transmittance. $K_h(v, z)$ is the absorption kernel, i.e. the product of molecular absorption crossection of methane for IR radiation frequency vwithin the spectral range of the instrument $[v_0, v_1]$ and air number density at specified altitude z. The parameters hand δ refer to uncertainty of the absorption kernel K and the measured opacity τ respectively.

We retrieved methane vertical profile using Tikhonov method of smooth functional, which takes into account *a priori* information about first guess profile.

Восстановление вертикального профиля

Линия поглощения CO₂ в атмосфере:

cm⁻¹

Восстановление концетрации

Сдвиг центра линии поглощения:

Определение центра линии:

Смещение центра линии поглощения согласно Доплеру:

Восстановление ветра:

Выводы

- 1. Измерен метан в атмосфере
- 2. Восставлен вертикальный профиль метана
- 3. Измерен спектр поглощение углекислого газа в атмосфере
- 4. Определен стратосферный ветер