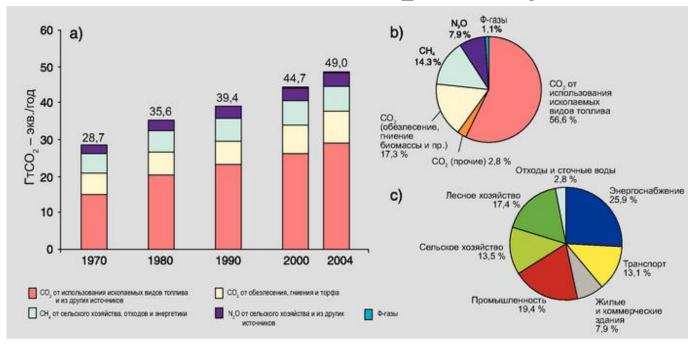
ИЗМЕРЕНИЯ КОНЦЕНТРАЦИЙ СО₂ И СН₄ МЕТОДАМИ ДИОДНОЙ ЛАЗЕРНОЙ СПЕКТРОСКОПИИ В АРКТИЧЕСКИХ РЕГИОНАХ РОССИИ С БОРТА САМОЛЕТА-ЛАБОРАТОРИИ ЯК-42Д «РОСГИДРОМЕТ»

А.С. Кузьмичев^{1,2}, А.И. Надеждинский²,Я.Я. Понуровский², Д.Б. Ставровский², Ю.П. Шаповалов², В.Я.Заславский², В.У.Хаттатов¹, В.В. Галактионов¹

¹-ФГБУ "ЦАО", Долгопрудный, Московская область, Россия;

²⁻ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОБЩЕЙ ФИЗИКИ им. А.М. ПРОХОРОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

Отдел диодной лазерной спектроскопии Института общей физики им. А.М.Прохорова РАН


23-ый ОБЩЕРОССИЙСКИЙ СЕМИНАР ПО ДИОДНОЙ ЛАЗЕРНОЙ СПЕКТРОСКОПИИ, 27 октября 2015 г.

СО2 и СН4 в Арктике

В выводах доклада Межправительственной группы экспертов по изменению климата (1) отмечается то, что наиболее вероятной причиной наблюдаемого с середины XX- столетия возрастания глобальных средних температур (глобальное потепление) является повышение концентраций антропогенных парниковых газов.

Парниковые газы антропогенного происхождения, попадающие под действие Рамочной конвенции ООН об изменении климата, включают диоксид углерода (CO_2), метан (CH_4), закись азота ($\mathrm{N}_2\mathrm{O}$) и фторсодержащие газы (Ф-газы) - гидрофторуглероды (ГФУ), перфторуглероды (ПФУ), гексафторид серы (SF_6). Диоксид углерода и метан вносят основную долю в общие эмиссии антропогенных ПГ, больший процент которых обеспечивается энергоснабжением, промышленностью и транспортом

СО2 и СН4 в Арктике

Глобальные ежегодные выбросы антропогенных ПГ с 1970 г. по 2004 г.,(б) Доля различных антропогенных ПГ в выбросах 2004 суммарных выраженная в эквиваленте углекислого (СО,-экв.), (с) Доля различных секторов выбросах суммарных антропогенных ПГ в 2004 г., выраженная в СО2-экв.

В соответствии с приведенной диаграммой, информация о содержании ${\rm CO_2}$ и ${\rm CH_4}$ в тропосфере и об их поверхностных источниках/стоках имеет первостепенное значение для мониторинга причин изменения температуры в приземной слое и свободной атмосфере.

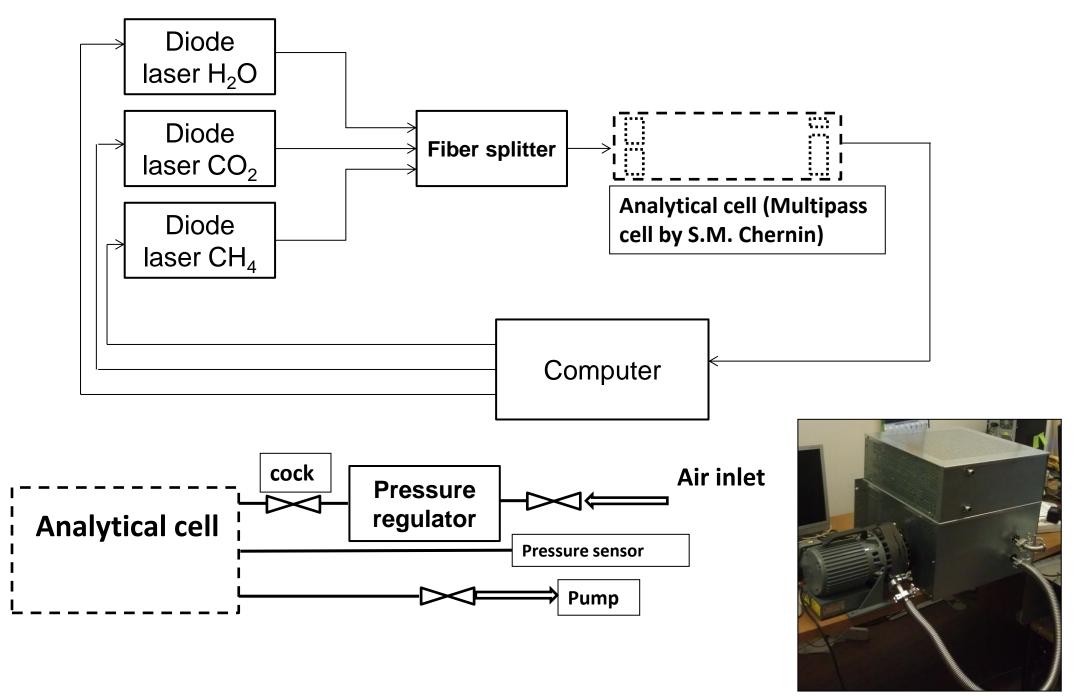
Вследствие сказанного, налаживание регулярного всестороннего изменения концентраций метана мониторинга И углекислого тропосфере, равно как и анализа и интерпретации получаемых данных, наиболее одной является И3 актуальных климатологических ближайшего времени.

САМОЛЕТ-ЛАБОРАТОРИЯ ЯК-42Д «РОСГИДРОМЕТ»

- -Экипаж 3 чел.;
- -Максимальная высота полета 10200 км;
- -Дальность полета 3500 км;
- -Диапазон скоростей полета от350 до 700 кмч;
- -Максимальный взлетный вес 59 т.
- -Бортоператоры до 14 чел.

Аппаратно-Программные комплексы самолета-лаборатории:

- -АПК-1 измерение навигационных параметров полета и термодинамических параметров атмосферы;
- -АПК-2 контроль газового и аэрозольного состава атмосферы;
- -АПК-3 измерение радиационного баланса и дистанционных исследований подстилающей поверхности;
- -АПК-4 мониторинг радиоактивных загрязнений атмосферы и поверхности;
- -АПК-5 измерение микрофизических параметров облаков и технические средства активных воздействий;
- -АПК-6 радиолокационные исследования атмосферы и поверхности;
- -АПК-7 измерение электрических характеристик атмосферы.


ИСПОЛЬЗОВАНИЕ ДИОДНЫХ ЛАЗЕРОВ ДЛЯ ИЗМЕРЕНИЯ МЕТАНА С БОРТОВ САМОЛЕТОВ-ЛАБОРАТОРИЙ

Ввиду невысокого энергопотребления, компактности и низкой стоимости использование диодных лазеров в качестве источников излучения получило особенно большое распространение в газоанализаторах, устанавливаемых на различные мобильные площадки (автомобиль, вертолет, самолет, баллон). Малые размеры позволяют используя линейку перестраиваемых диодных лазеров в ближнем ИК-диапазоне определять в режиме реального времени концентрации до 5 газовых составляющих атмосферы. Основной проблемой газоанализаторов для определения концентраций метана является организация оптической трассы для детектирования. В зависимости от поставленной задачи, трасса может быть открытой и закрытой (многоходовая кювета).

На самолетах-лабораториях в основном используются газоанализоторы с многоходовой кюветой, через которую организована прокачка воздуха, с помощью насоса, располагающегося либо в багажном отделении, либо непосредственно в корпусе прибора.

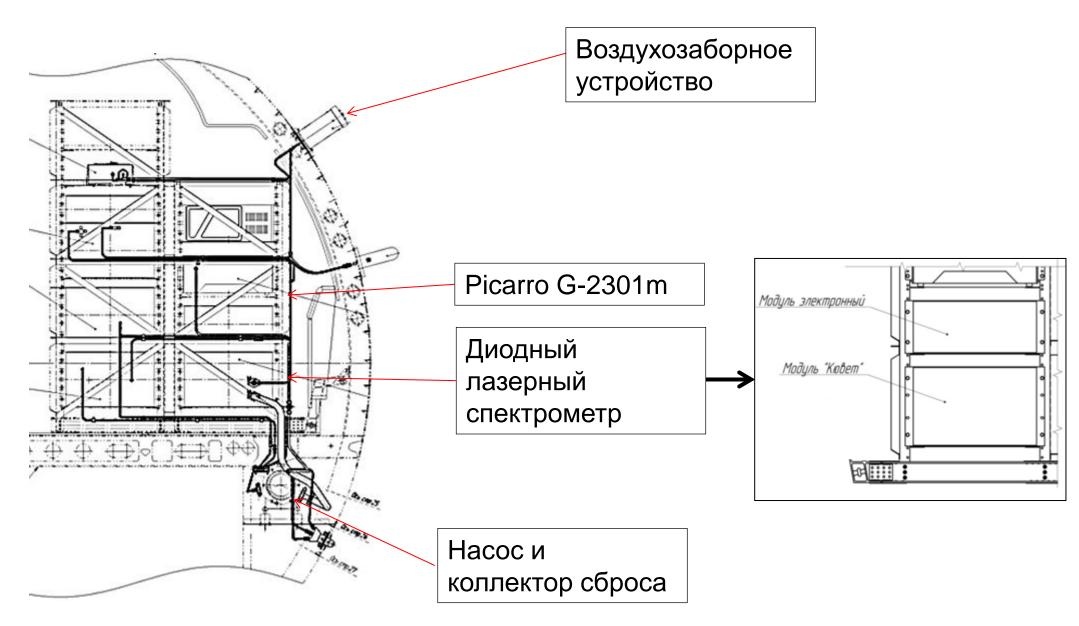
Важнейший элемент- многоходовая кювета, в зависимости от производителя собирается либо по схеме CRDS (1), либо ICOS, либо по системе им. С.М. Чернина (3)

DIODE LASER SPECTROMETER (GPI, Russia)

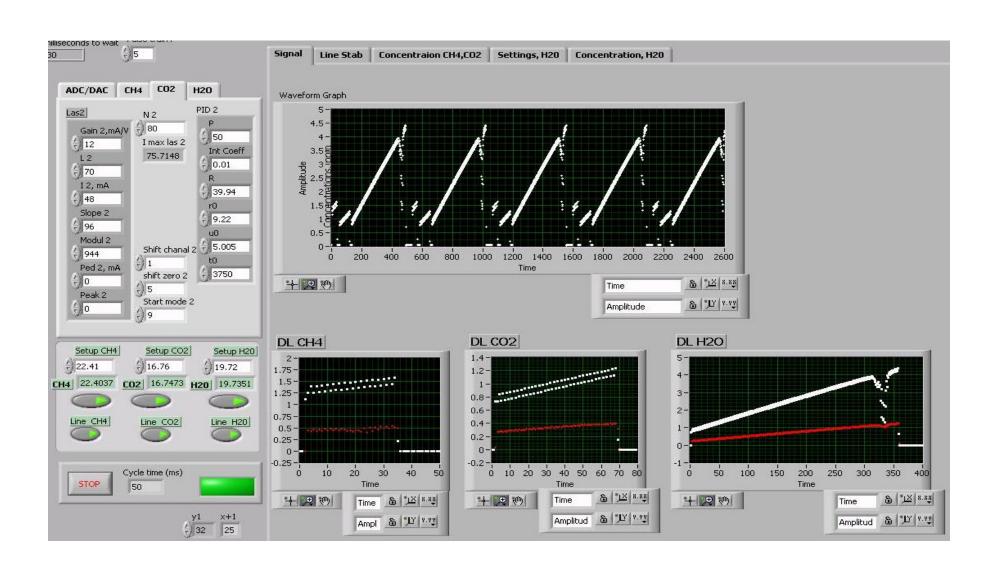
ДИОДНЫЙ ЛАЗЕРНЫЙ СПЕКТРОМЕТР ИОФ РАН

Внешний вид

Электронный блок



Кюветный блок

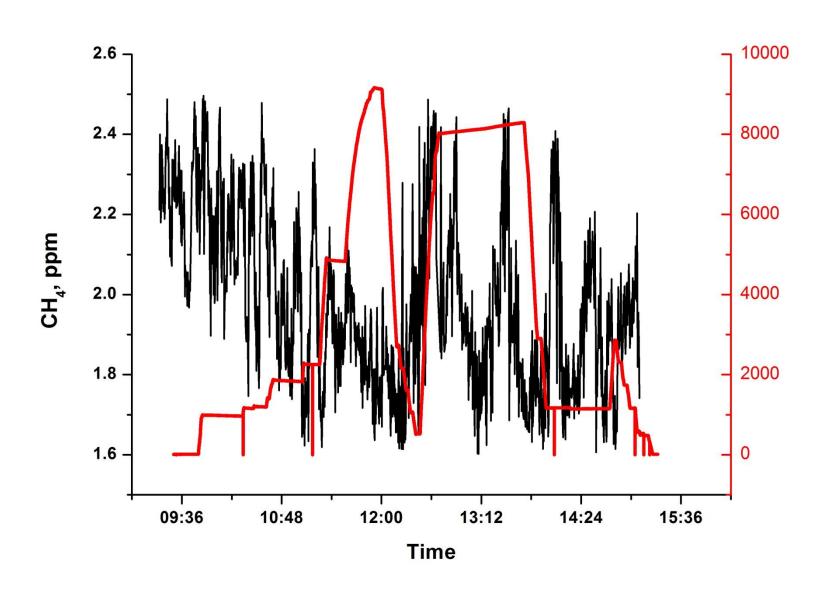


РАЗМЕЩЕНИЕ СПЕКТРОМЕТРА НА БОРТУ САМОЛЕТА-ЛАБОРАТОРИИ

Главное рабочее окно управления спектрометром

МАРШРУТЫ ПОЛЕТОВ В АРКТИЧЕСКОМ РЕГИОНЕ 2014-2015 ГГ

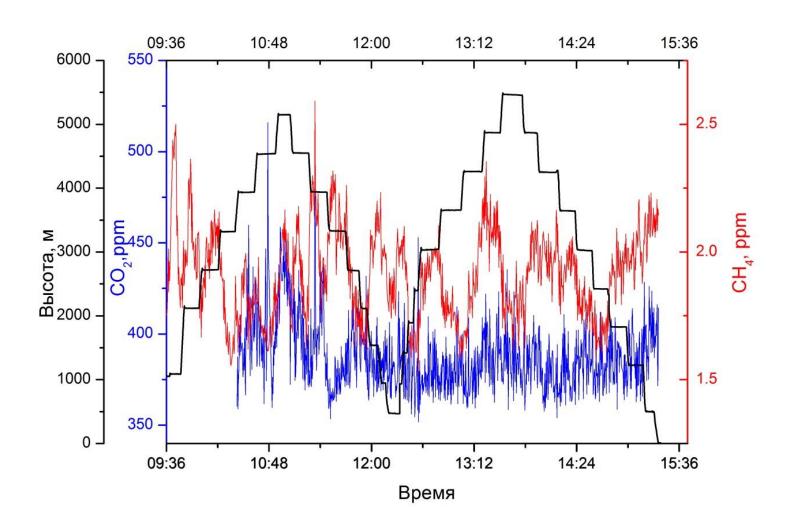
- 1- г. Нарьян-Мар
- 2- район на полуострове Ямал


- 1- г. Нарьян-Мар
- 2- северная оконечность п-ова Новая Земля

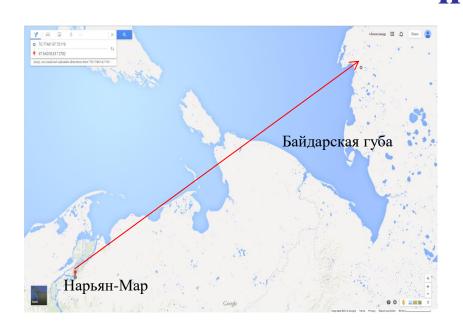
МАРШРУТЫ ПОЛЕТОВ В МОСКОВСКОМ РЕГИОНЕ $2014-2015\ \Gamma\Gamma$

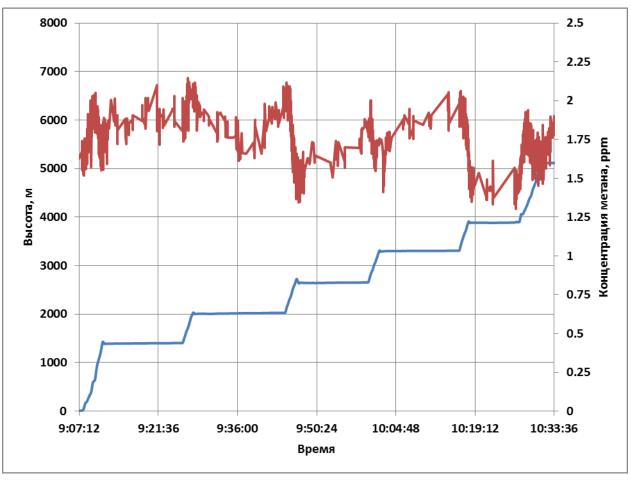
Схема полета по мониторингу газового состава около г. Москва от 19 декабря 2014 г.

ПРОСТРАНСТВЕННО-ВРЕМЕННОЕ РАСПРЕДЕЛЕНИЕ МЕТАНА 3 ОКТЯБРЯ 2014 г. в районе п-ова Новая Земля.

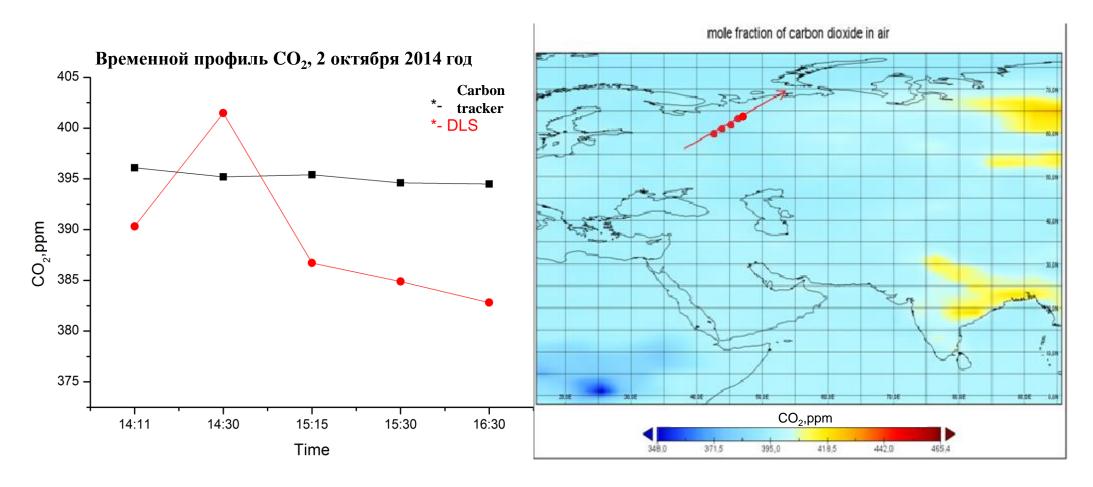


Результаты наблюдения концентраций углекислого газа 28 февраля 2015 года

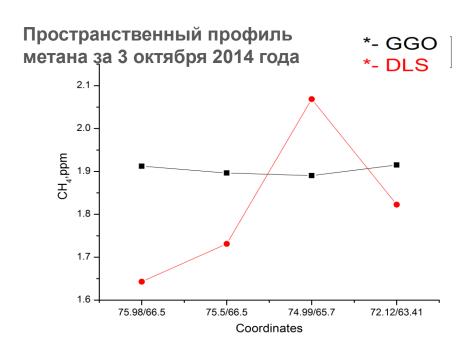



График черного цвета- временной профиль концентрации, полученный абсорбционным спектрометром Li-7500a (2)

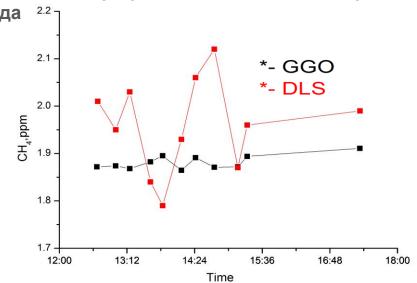
ПРОСТРАНСТВЕННО-ВРЕМЕННОЕ РАСПРЕДЕЛЕНИЕ МЕТАНА И УГЛЕКИСЛОГО ГАЗА 3 октября 2014 г. в районе п-ова Новая Земля

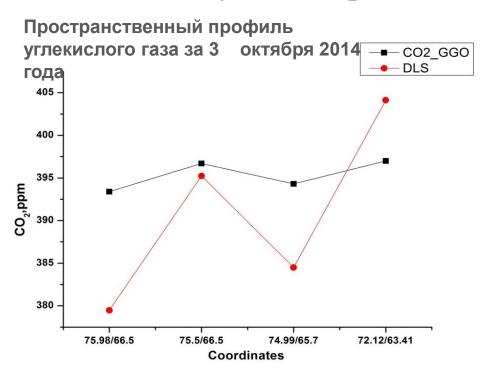


ПРОСТРАНСТВЕННО-ВРЕМЕННОЕ РАСПРЕДЕЛЕНИЕ МЕТАНА 19 июня 2014 г. в районе п-ова Ямал

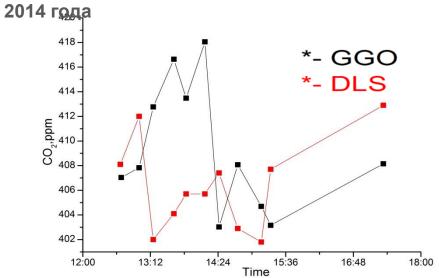


Сопоставление значений концентраций СО₂ с моделью Carbon tracker(3)




На рисунке справа отмечены точки в которых забирались пробы, красный вектор это траектория перелета из Москвы в Нарьян-Мар.

Сопоставление с результатами анализа воздушных проб (4)



Временной профиль углекислого газа за 19 декабря 2014 года

Заключение

- 1. Разработанный диодный лазерный спектрометр полностью работоспособен при работе при низких температурах.
- 2. Измеряемые значения находятся в рамках базовых фоновых значений концентраций метана.
- 3. Чувствительность газоанализатора позволяет определять малые вариации метана во время полета самолета-лаборатории.

Список использованных источников

- 1. http://www.ipcc.ch/publications_and_data/ar4/syr/ru/spms2.html
- 2. http://www.licor.com/env/products/gas_analysis/LI-7500A/
- 3. http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
- 4. Решетников А.И., и др. Методика и некоторые результаты самолетных измерений в атмосфере. // Радиационные исследования в атмосфере. Труды «ГГО им. А.И. Воейкова», -Л.: Гидрометеоиздат, №415, стр. 61-67, 1979.
- 5. МГЭИК, 2007: Отчет Межправительственной группы экспертов по изменениям климата, 2007.
- 6. Ozone Depletion, 2010: WMO Scientific Assessment of Ozone Depletion:
- 2010. WMO Global Ozone Research and Monitoring Project. Report № 52. Crutzen P.J., Zimmermann P.H. The changing photochemistry of the troposphere // Tellus. 1991. Vol. AB43. P. 136–151.
- 7. A.I. Nadezhdinsky, Ya. Ya. Ponurovsky, A. S. Kuzmichev Preliminary results of an aircraft system based on near-IR diode lasers for continuous measurements of the concentration of methane, carbon dioxide, water and its isotopes Appl. Phys. B (2012) 109:505–510 DOI 10.1007/s00340-012-5226-z.
- 8. http://www.lgrinc.com/
- 9. http://www.picarro.com/