Определение максимальной температуры в пространственно неоднородной горячей зоне методом диодной лазерной абсорбционной спектроскопии

М.А. Большов, Ю.А. Курицын, В.В. Лигер, В.Р. Мироненко

Институт спектроскопии РАН, Россия, 142190 Москва, г. Троицк

Принцип лазерной абсорбционной термометрии

Отношение интегральных интенсивностей переходов является функцией температуры :

$$R = \frac{S_1(T)}{S_2(T)} = A \exp(-hc\Delta E/kT)$$

Спектральный интервал 1.3-1.5 мкм

Поглощение H2O ~ 10⁻²÷10⁻³

А-определяется спектроскопическими параметрами переходов

Аппроксимация участком спектра

На основе базы данных симулируется участок спектра с

- выбранными линиями, который подгоняется к
- экспериментальному спектру.
- В качестве подгоночных параметров используются:
- положения центров линий,
- параметры базовой линии,
- температура,
- полное давление воздуха и
- концентрация молекул воды.

Последние два параметра важны для правильной аппроксимации линий поглощения воды с учетом коэффициентов уширения воздухом и самоуширения.

1. Неопределенность базовой линии

2.Неоднородное распределение температуры

ГЕОМЕТРИЯ ИЗМЕРЕНИЙ В ГОРЕЛКЕ

Тэфф=950К

Результат подгонки в предположении однородного распределения температуры :

Scим= 0.8* S(1500) +0.2*S(500)+noise

Симулированный спектр :

Компьютерное моделирование для интервала 7188.8-7189.8 см ⁻¹

Учет неоднородности распределения температуры объекта

- 1. Томография
- 2. Line-of-sight. Много изолированных линий с различной температурной зависимостью.

Наш подход

- Частный, но широко распространенный важный случай объект имеет протяженную квазиоднородную зону с высокой температурой + переходная область от максимальной до комнатной температуры
- 2. Принципиально важным является именно знание максимальной температуры.
- 3. Выбор горячих линий для уменьшения вклада низкотемпературных участков
- **4.** Возможность регистрации этих линий одним, максимум двумя лазерами.
- 5. Анализ спектров корреляционным методом
- 6. В случае сильного отличия эффективной температуры от максимальной пытаться использовать двухзонную модель объекта со ступенчатым распределением температур и, таким образом, скорректировать вклад низкотемпературной зоны.

Конструкция двухсекционной кюветы

Схема лабораторной установки

Расхождение экспериментальных и симулированных спектров

Сплошная линия — HITRAN Точки- эксперимент

Массив экспериментальных спектров в интервале температур 500-1200К (собственная база данных)

Результаты компьютерного моделирования

Экспериментальные спектры симулировались линейной комбинацией двух спектров из базы данных с добавлением шума:

Scим=S(T1)+S(T2)+noise

Модель		Расчет					
T2	T1	Teff	T high	T low	K corr		
900	500	710	899.9	500.2	0.999859		
1200	500	800	1200.7	500.3	0.999842		
1500	500	820	1501.1	500.1	0.999794		
2000	500	760	1999.8	500.3	0.999548		
1200	700	890	1206.3	700.5	0.999896		
1500	700	920	1501.8	700.3	0.999842		

Двухзонный температурный анализ

экспериментальных данных

эксперимент		Подгонка одной температурой		Подгонка двумя значениями температуры			
T 2(+_2K)	T1 (+2K)	ͳ϶φφ	Γ эφφ	Th (<u>+</u> 10K)	T I (<u>+</u> 10K)	rmax	
781	576	670	0.9970	780	580	0.9981	
888	700	820	0.9866	890	660	0.9906	
921	505	780	0.9978	890	600	0.9983	
990	580	780	0.9985	990	550	0.9985	
1021	690	780	0.9968	1020	550	0.9983	
1094	510	890	0.9993	1150	600	0.9997	
1152	515	840	0.9961	1160	530	0.9975	
1175	520	930	0.9970	1180	580	0.9985	

Компоненты подгонки экспериментального спектра (T2=921K T1=505K)

Scим= 0.8*S(1090K) + 0.2*S (520K) +noise

Эволюция спектров в течение эксперимента в 3D представлении

b

Фрагменты отдельных этапов процесса

Результат работы схемы компенсации влияния вибраций и засветки (измерения в керосиновой горелке)

а - без компенсации, перегрузка предусилителя

- b включена компенсация засветки. Динамический диапазон восстановлен, но видны сильные флуктуации сигнала из-за вибрации
- с дополнительно включена компенсация вибраций. Все спектры практически стабильны

Фрагменты отдельных этапов процесса

Выводы

Предложен и экспериментально подтвержден новый алгоритм для оценки максимальной температуры в пространственно неоднородных газообразных объектах.

Особенность этого алгоритма-представление экспериментального спектра поглощения в виде суммы двух однотемпературных спектров "горячей " и "холодной" зон с соответствующими подгоночными коэффициентами.

При практическом применении этого алгоритма для определения температуры продуктов горения в реальных сверхзвуковых установках необходимо использовать конструктивные, аппаратные и программные методы для улучшения отношения сигнал/помеха. Подбор оптимального спектрального диапазона с преобладанием "горячих" линий

Разработка критериев применимости двухзонного ступенчатого представления к более реалистичному трапециевидному распределению температур

Модернизация программной обработки спектров с целью обеспечения устойчивости вычислительного процесса.

Возможность применения модуляционной методики с целью дальнейшего улучшения сигнал/шум.

Спасибо за внимание