Уширение и сдвиг триплета 6046.96 см⁻¹ СН₄ и его компонент столкновениями с молекулами SF₆

В.А. Капитанов, Ю.Н. Пономарев, И.С. Тырышкин, А.Д. Быков, В.Н. Савельев

Институт оптики атмосферы СО РАН, г. Томск, пр.Академический 1, kvan@asd.iao.ru

Broadening and shift coefficient of the methane R(3)triplet of the $2v_3$ band broadened by SF_6 molecules

V.A.Kapitanov, Yu.N.Ponomarev, I.S.Tyryshkin, A.D.Bykov, V.N.Saveliev

Despite the fact that intensities and centers of methane lines are known with a high accuracy, the line half-widths are determined worse and the pressure-induced line center shifts are often unknown at all. The methane triplet R(3) of $2v_3$ band consists of 3 closely positioned lines, overlapped even under Doppler broadening. In this work we present results on the triplet broadening and shift by SF₆. The measurements were carried out by highly sensitive spectrometers at SNR > 1000, which allowed evaluating the shift and broadening coefficients of the triplet components.

Схема ОА спектрометра

Лазер: Δv - 6060-6250 см⁻¹; dv - 2,5-3 см⁻¹; W - 3-7 мВт ; ОАД: $\Delta = (U_m^2)^{1/2}/R \ 4*10^{-9} \ \text{см}^{-1}\text{BT}$

1-измеритель длины волны; 2-интерферометр Фабри-Перо; 3-контроллер, управляющий характеристиками лазера; 4-диодный лазер; 5-модулятор; 6-ОАД; 7-микрофон; 8-дифференциальный предусилитель; 8-измеритель мощности; 10- контроллер модулятора; 11-контроллер спектрометра; 12-компьютер

ОА спектрометр

The computer screen display for the LabVIEW data acquisition operating system.

ОА детекторы

L₁ =120 MM L₂ =150 MM \varnothing =5 MM R = 7 MM

ОАД – Патент № 51746 От 04.04.2005 Зеркальный модулятор (х2) – Патенты №2815122, №98119984/20

Amplitude-frequency characteristics of OA cell

Here U1 and U1ex are the calculated and experimental signals, respectively, of the microphone located in the cylinder, through which the laser radiation passes; U2 and U2ex are the calculated and experimental signals, respectively, of the microphone located in the unlighted cylinder, as well as their differences.

The methane absorption spectrum in a range 6079 – 6089 cm⁻¹

Triplet R(3) of $2v_3$ methane absorption band, broadened by air pressure

Halfwidth of the triplet R(3) vs CH₄ - N₂, -air and - SF₆ mixture pressure

Mass center shift of the triplet R(3) vs CH₄ - N₂, -air and – SF₆ mixture pressure

Table. Shift coefficient of the unresolved triplet

Perturber	δ (cm ⁻¹ atm ⁻¹) [14]	$\begin{cases} \delta (cm^{-1} atm^{-1}) \\ [this work] \end{cases}$
Air	-0.0110±0.0010	-0.0113±0.00023
N ₂		-0.0112±0.00019
Не	+0.0023±0.002	
Ne	-0.0005±0.0002	
Ar	-0.0113±0.0011	
Kr	-0.0151±0.0006	
SF ₆		-0.0181±0.00038
Хе	-0.0204±0.0012	

R(3) мультиплет CH₄ 6046.9 см⁻¹

R(3) мультиплет CH₄ 6046.9 см⁻¹

Определение параметров отдельных компонент триплета. Контур Розенкранца

$$\alpha(x, y) = \frac{1}{\gamma_D \pi^{3/2}} \int_{-\infty}^{\infty} \frac{\xi y + \eta(x - t)}{(x - t)^2 + y^2} e^{-t^2} dt$$

$$x = (\omega - \omega_0)/\gamma_D$$
, $y = \gamma/\gamma_D$ $\gamma_D = \omega_0 \sqrt{2kT/mc}$

$$\xi = \xi_0 + \xi_1 P + \xi_2 P^2 + .. (=$$
интенсивность для
изолированных линий).
 $\eta = \eta_1 P + ...$ (= 0 для изолированных линий)

Основные соотношения теории ударного уширения

$$\gamma_{fi} + i\delta_{fi} = \frac{n}{c} \sum_{p} \rho(p) \int_{0}^{\infty} dvvf(v) \int_{0}^{\infty} dbbU(i, f, p, b, v)$$

Re $U(i, f, p, b, v) = 1 - \cos[\operatorname{Im} S(b)] \exp[-\operatorname{Re} S(b)]$
Im $U(i, f, p, b, v) = \sin[\operatorname{Im} S(b)] \exp[-\operatorname{Re} S(b)]$

n – плотность частиц термостата,

с – скорость света,

 $\rho(p)$ – заселенность *p*-го уровня уширяющей частицы,

v - относительная скорость,

f(v) - функция распределения Максвелла,

b – прицельное расстояние.

S(b) – функция эффективности

Ключевые моменты расчета

- Экспоненциальное представление функции эффективности столкновений, совместный учет адиабатического сдвига уровней и неадиабатического эффекта.
- Приближение «линейного» распределения зарядов.
- Учет индуцированного внутримолекулярными взаимодействиями дипольного момента CH₄.
- Диполь- гексадекапольное октуполь гексадекапольное + гексадекаполь – гексадекапольное+ дисперсионное взаимодействия.

Молекулярные характеристики CH₄ и SF₆.

Параметр	CH ₄	SF ₆
Вращательная постоянная, см-1	5.24059	0.09111
Центробежная постоянная, см ⁻¹	1.086 10-4	1.6 10-8
Дипольный момент, Д	$\begin{array}{l} \mu_{0000} = 5.38 \times 10^{-6} \\ \mu_{0020} = 4.0 \times 10^{-2} \end{array}$	
Поляризуемость, А ³	$ \begin{vmatrix} \alpha_{0000} = 2.564 \\ \alpha_{0020} = 2.662 \end{vmatrix} $	6.475
Октупольный момент, ДА ²	2.6	
Гексадекапольный момент, ДА ³	4.8	30.0
Потенциал ионизации, эВ	12.98	15.7

Параметры ξ_n для триплета R(3) 2ν₃ CH₄

Зависимость сдвига компоненты 6046.9420 см⁻¹ СН₄ от давления буферного газа SF₆.

Зависимость сдвига компоненты триплета 6046.9527 см⁻¹ СН₄ от давления буферного газа SF₆.

Зависимость сдвига компоненты 6046.9648 см⁻¹ СН₄ от давления буферного газа SF₆.

Полуширины компонент триплета R(3) 6046.9420 см⁻¹ СН₄.

Измеренные и вычисленные значения полуширин и сдвигов компонент триплета 6046.96 см⁻¹ СН₄ при уширении давлением SF₆. Значения даны в mk/атм.

	$\begin{array}{c} 0 \ 3 \ F2 \ 1 \rightarrow 4 \ 4 \ F1 \ 142^{a)} \\ 6046.9420 \ (I) \end{array}$	0 3 F1 1 →4 4 F2 142 ^{a)} 6046.9527 (II)	0 3 A2 1 →4 4 A1 1 ^{a)} 6046.9647 (III)		
Полуширина, эксп.	74.1±4.4	95.1±2.9	65.4±2.2		
Полуширина, расч.	68	68	68		
Сдвиг, эксп.	-15.4±0.8	-13.7±0.9	-13.6±0.8		
Сдвиг, расч.	-36	-36	-36		
Средние значения					
Полуширина, эксп.		78.2			
Полуширина, расч.		68			
Сдвиг, эксп.		-14.2			
Сдвиг, расч.		-36			

а) Квантовые числа состояний P J C n, где P – номер полиады, J – квантовое число углового момента,

C – тип симметрии, n – номер уровня данной симметрии в порядке возрастания.

Выводы и дальнейшие исследования

- Измерения с высоким спектральным разрешением и отношением сигнал/шум позволяют восстанавливать индивидуальные параметры компонент мультиплетов
- Внутримолекулярные эффекты, интерференция линий оказывают сильное влияние на полуширину и сдвиг линий в мультиплетах
- Необходимо использовать более точные волновые функции, учитывающие симметрию молекулы

- Работа выполнена при финансовой поддержке РФФИ (Грант № 04-03-32627).
- Авторы выражают благодарность Никитину А.В. за предоставление данных о квантовой идентификации линии 6046.96 см⁻¹ СН₄